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Chapter 

1 

Basic Concepts 
 
 

The term data structure is used to describe the way data is stored, and the term 
algorithm is used to describe the way data is processed. Data structures and algorithms 
are interrelated. Choosing a data structure affects the kind of algorithm you might use, 
and choosing an algorithm affects the data structures we use. 

 
An Algorithm is a finite sequence of instructions, each of which has a clear meaning 

and can be performed with a finite amount of effort in a finite length of time. No matter 
what the input values may be, an algorithm terminates after executing a finite number 
of instructions. 

 
 

• Introduction to Data Structures: 

 

Data structure is a representation of logical relationship existing between individual elements of 

data. In other words, a data structure defines a way of organizing all data items that considers 

not only the elements stored but also their relationship to each other. The term data structure is 

used to describe the way data is stored. 

 

To develop a program of an algorithm we should select an appropriate data structure for that 

algorithm. Therefore, data structure is represented as: 

 

Algorithm + Data structure = Program 

 

A data structure is said to be linear if its elements form a sequence or a linear list. The linear 

data structures like an array, stacks, queues and linked lists organize data in linear order. A data 

structure is said to be non linear if its elements form a hierarchical classification where, data 

items appear at various levels. 

 

Trees and Graphs are widely used non-linear data structures. Tree and graph structures 

represents hierarchial relationship between individual data elements. Graphs are nothing but 

trees with certain restrictions removed. 

 

Data structures are divided into two types: 

 

• Primitive data structures. 

• Non-primitive data structures. 

 

Primitive Data Structures are the basic data structures that directly operate upon the machine 
instructions. They have different representations on different computers. Integers, floating point 
numbers, character constants, string constants and pointers come under this category. 

 

Non-primitive data structures are more complicated data structures and are derived from 
primitive data structures. They emphasize on grouping same or different data items with 
relationship between each data item. Arrays, lists and files come under this category. Figure 
1.1 shows the classification of data structures. 
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Figure 1. 1. Cla s s if ic at io n of Da t a Struc ture s 

 

1.2. Data structures: Organization of data 

 

The collection of data you work with in a program have some kind of structure or organization. 

No matte how complex your data structures are they can be broken down into two fundamental 

types: 

• Contiguous 

• Non-Contiguous. 

 

In contiguous structures, terms of data are kept together in memory (either RAM or in a file). An 

array is an example of a contiguous structure. Since each element in the array is located next to 

one or two other elements. In contrast, items in a non-contiguous structure and scattered in 

memory, but we linked to each other in some way. A linked list is an example of a non-contiguous 

data structure. Here, the nodes of the list are linked together using pointers stored in each node. 

Figure 1.2 below illustrates the difference between contiguous and non- contiguous structures. 
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Figure 1.2 Contiguous and Non-contiguous structures compared 

 

Contiguous structures: 

 

Contiguous structures can be broken drawn further into two kinds: those that contain data items 

of all the same size, and those where the size may differ. Figure 1.2 shows example of each kind. 
The first kind is called the array. Figure 1.3(a) shows an example of an array of numbers. In an 
array, each element is of the same type, and thus has the same size. 

 

The second kind of contiguous structure is called structure, figure 1.3(b) shows a simple structure 
consisting of a person‘s name and age. In a struct, elements may be of different data types and 
thus may have different sizes. 
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int arr[3] = {1, 2, 3}; struct cust_data 
{ 

int age; 

 

}; 

(a) Array 
cust_data bill= {21, bill the stude }; 

(b) struct 

bill the stude  

21 

 
 

For example, a person‘s age can be represented with a simple integer that occupies two bytes of 
memory. But his or her name, represented as a string of characters, may require many bytes 
and may even be of varying length. 

 

Couples with the atomic types (that is, the single data-item built-in types such as integer, float 

and pointers), arrays and structs provide all the ―mortar‖ you need to built more exotic form of 

data structure, including the non-contiguous forms. 
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Figure 1.3 Examples of contiguous structures. 

 

Non-contiguous structures: 

 

Non-contiguous structures are implemented as a collection of data-items, called nodes, where 

each node can point to one or more other nodes in the collection. The simplest kind of non- 

contiguous structure is linked list. 

 

A linked list represents a linear, one-dimension type of non-contiguous structure, where there is 
only the notation of backwards and forwards. A tree such as shown in figure 1.4(b) is an example 
of a two-dimensional non-contiguous structure. Here, there is the notion of up and down and left 
and right. 

 

In a tree each node has only one link that leads into the node and links can only go down the 
tree. The most general type of non-contiguous structure, called a graph has no such restrictions. 
Figure 1.4(c) is an example of a graph. 

 

Figure 1.4. Examples of non-contiguous structures 
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Searching and 
Sorting 

 

 
There are basically two aspects of computer programming. One is data 
organization also commonly called as data structures. Till now we have seen 
about data structures and the techniques and algorithms used to access them. 

The other part of computer programming involves choosing the appropriate 
algorithm to solve the problem. Data structures and algorithms are linked each 
other. After developing programming techniques to represent information, it 

is logical to proceed to manipulate it. This chapter introduces this important 
aspect of problem solving. 

 
 

Searching is used to find the location where an element is available. There are two 
types of search techniques. They are: 

 

• Linear or sequential search 

• Binary search 

 
Sorting allows an efficient arrangement of elements within a given data structure. It is a 

way in which the elements are organized systematically for some purpose. For example, 

a dictionary in which words is arranged in alphabetical order and telephone director in 

which the subscriber names are listed in alphabetical order. There are many sorting 

techniques out of which we study the following. 

 

• Bubble sort 

• Quick sort 

• Selection sort and 

• Heap sort 

 
There are two types of sorting techniques: 

 

1.3. Internal sorting 

1.4. External sorting 

 
If all the elements to be sorted are present in the main memory then such sorting is 
called internal sorting on the other hand, if some of the elements to be sorted are kept 
on the secondary storage, it is called external sorting. Here we study only internal 
sorting techniques. 

 

• Linear Search: 

 
This is the simplest of all searching techniques. In this technique, an ordered or 
unordered list will be searched one by one from the beginning until the desired element 
is found. If the desired element is found in the list then the search is successful otherwise 
unsuccessful. 

 
Suppose  there  are  ‗n’  elements  organized  sequentially  on  a  List.  The  number  of 



comparisons required to retrieve an element from the list, purely depends on where the 

element is stored in the list. If it is the first element, one comparison will do; if it is 

second element two comparisons are necessary and so on. On an average you need 

[(n+1)/2] comparison‘s to search an element. If search is not successful, you would need 

‘n’ comparisons. 

 

The time complexity of linear search is O(n). 

 

Algorithm: 
 

Let array a[n] stores n elements. Determine whether element ‗x‘ is present or not. 

 
linsrch(a[n], x) 

{ 

index = 0; 

flag = 0; 

while (index < n) do 

{ 

if (x == a[index]) 

{ 

flag = 1; 
break; 

} 

index ++; 

} 

if(flag == 1) 

printf(―Data found at %d position―, index); 

else 

printf(―data not found‖); 
 

} 

 

Example 1: 

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20 

If we are searching for: 45, we‘ll look at 1 element before success 

39, we‘ll look at 2 elements before success 
8, we‘ll look at 3 elements before success 

54, we‘ll look at 4 elements before success 

77, we‘ll look at 5 elements before success 

38 we‘ll look at 6 elements before success 

24, we‘ll look at 7 elements before success 

16, we‘ll look at 8 elements before success 

4, we‘ll look at 9 elements before success 

7, we‘ll look at 10 elements before success 

9, we‘ll look at 11 elements before success 

20, we‘ll look at 12 elements before success 

 

For any element not in the list, we‘ll look at 12 elements before failure. 



Example 2: 

 

Let us illustrate linear search on the following 9 elements: 
 

Index 0 1 2 3 4 5 6 7 8 

Elements -15 -6 0 7 9 23 54 82 101 

 

Searching different elements is as follows: 

1.3. Searching for x = 7 Search successful, data found at 3
rd 

position. 

1.4. Searching for x = 82 Search successful, data found at 7
th 

position. 

1.5. Searching for x = 42 Search un-successful, data not found. 

 

1.4. A non-recursive program for Linear Search: 

 

\{ include <stdio.h> 

\{ include <conio.h> 
 

main() 

{ 

 

 
int number[25], n, data, i, flag = 0; 

clrscr(); 

printf("\n Enter the number of elements: "); 
scanf("%d", &n); 
printf("\n Enter the elements: 

"); for(i = 0; i < n; i++) 

scanf("%d", &number[i]); 

printf("\n Enter the element to be Searched: "); 

scanf("%d", &data); 
for( i = 0; i < n; i++) 

{ 

if(number[i] == data) 

{ 

flag = 1; 
break; 

} 

} 

if(flag == 1) 

printf("\n Data found at location: %d", i+1); 

else 
 

} 

 

printf("\n Data not found "); 

 
 

1.5. A Recursive program for linear search: 

 
1.6. include <stdio.h> 

1.7. include <conio.h> 

 

void linear_search(int a[], int data, int position, int n) 
{ 

if(position < n) 



{ 

if(a[position] == data) 

printf("\n Data Found at %d ", position); 

 

} 

else 

else  

linear_search(a, data, position + 1, n); 

 

} 

 
void main() 

{ 

printf("\n Data not found"); 

int a[25], i, n, data; 
clrscr(); 

printf("\n Enter the number of elements: "); 

scanf("%d", &n); 

printf("\n Enter the elements: 

"); for(i = 0; i < n; i++) 

{ 
scanf("%d", &a[i]); 

} 

printf("\n Enter the element to be seached: "); 

scanf("%d", &data); 

linear_search(a, data, 0, n); 
getch(); 

} 

 

 
1. BINARY SEARCH 

If we have ‗n‘ records which have been ordered by keys so that x1 < x2 < … < xn . When we 

are given a element ‗x‘, binary search is used to find the corresponding element from the 

list. In case ‗x‘ is present, we have to determine a value ‗j‘ such that a[j] = x (successful 

search). If ‗x‘ is not in the list then j is to set to zero (un successful search). 

 

In Binary search we jump into the middle of the file, where we find key a[mid], and 
compare ‗x‘ with a[mid]. If x = a[mid] then the desired record has been found. If x < 
a[mid] then ‗x‘ must be in that portion of the file that precedes a[mid]. Similarly, if a[mid] 
> x, then further search is only necessary in that part of the file which follows a[mid]. 

 

If we use recursive procedure of finding the middle key a[mid] of the un-searched portion 

of a file, then every un-successful comparison of ‗x‘ with a[mid] will eliminate roughly half 

the un-searched portion from consideration. 
 

Since the array size is roughly halved after each comparison between ‗x‘ and a[mid], and 

since an array of length ‗n‘ can be halved only about log2n times before reaching a trivial 

length, the worst case complexity of Binary search is about log2n. 

 
Algorithm: 

 

Let array a[n] of elements in increasing order, n ≥ 0, determine whether ‗x‘ is present, 

and if so, set j such that x = a[j] else return 0. 



binsrch(a[], n, x) 

{ 

low = 1; high = n; 

while (low < high) do 
{ 

mid = (low + high)/2 if 

(x < a[mid]) 

high = mid – 1; 

else if (x > a[mid]) 

low = mid + 
1; else return mid; 

} 

return 0; 

} 
 

low and high are integer variables such that each time through the loop either ‗x‘ is found 

or low is increased by at least one or high is decreased by at least one. Thus we have 

two sequences of integers approaching each other and eventually low will become greater 

than high causing termination in a finite number of steps if ‗x‘ is not present. 

 

Example 1: 

 

Let us illustrate binary search on the following 12 elements: 
 

Index 1 2 3 4 5 6 7 8 9 10 11 12 

Elements 4 7 8 9 16 20 24 38 39 45 54 77 

 

If we are searching for x = 4: (This needs 3 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 

low = 1, high = 2, mid = 3/2 = 1, check 4, found 

 

If we are searching for x = 7: (This needs 4 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 

low = 1, high = 2, mid = 3/2 = 1, check 4 

low = 2, high = 2, mid = 4/2 = 2, check 7, found 

 

If we are searching for x = 8: (This needs 2 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8, found 

 

If we are searching for x = 9: (This needs 3 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 

low = 4, high = 5, mid = 9/2 = 4, check 9, found 

 

If we are searching for x = 16: (This needs 4 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 

low = 4, high = 5, mid = 9/2 = 4, check 9 

low = 5, high = 5, mid = 10/2 = 5, check 16, found 

 

If we are searching for x = 20: (This needs 1 comparison) 

low = 1, high = 12, mid = 13/2 = 6, check 20, found 



If we are searching for x = 24: (This needs 3 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 

low = 7, high = 8, mid = 15/2 = 7, check 24, found 

 
If we are searching for x = 38: (This needs 4 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 7, high = 8, mid = 15/2 = 7, check 24 

low = 8, high = 8, mid = 16/2 = 8, check 38, found 

 
If we are searching for x = 39: (This needs 2 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39, found 

 
If we are searching for x = 45: (This needs 4 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 

low = 10, high = 12, mid = 22/2 = 11, check 54 

low = 10, high = 10, mid = 20/2 = 10, check 45, found 

 
If we are searching for x = 54: (This needs 3 comparisons) 

low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 

low = 10, high = 12, mid = 22/2 = 11, check 54, found 

 
If we are searching for x = 77: (This needs 4 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 

low = 10, high = 12, mid = 22/2 = 11, check 54 

low = 12, high = 12, mid = 24/2 = 12, check 77, found 

The number of comparisons necessary by search element: 

20 – requires 1 comparison; 

8 and 39 – requires 2 comparisons; 
4, 9, 24, 54 – requires 3 comparisons and 

7, 16, 38, 45, 77 – requires 4 comparisons 

 

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding 

37/12 or approximately 3.08 comparisons per successful search on the average. 

 

Example 2: 

 

Let us illustrate binary search on the following 9 elements: 
 

Index 0 1 2 3 4 5 6 7 8 

Elements -15 -6 0 7 9 23 54 82 101 

 

Solution: 

 

The number of comparisons required for searching different elements is as follows: 



1. If we are searching for x = 101: (Number of comparisons = 4) 
low high mid 
1 9 5 

6 9 7 

8 9 8 
9 9 9 

found 

 
2. Searching for x = 82: (Number of comparisons = 3) 

low high mid 
1 9 5 

6 9 7 
8 9 8 

found 

 
3. Searching for x = 42: (Number of comparisons = 4) 

low high mid 
1 9 5 

6 9 7 

6 6 6 

6 not found 
 

4. Searching for x = -14: (Number of comparisons = 3) 
low high mid 
1 9 5 

1 4 2 

1 1 1 

2 1 not found 

 

Continuing in this manner the number of element comparisons needed to find each of 

nine elements is: 
 

Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

Comparisons 3 2 3 4 1 3 2 3 4 

 

No element requires more than 4 comparisons to be found. Summing the comparisons 

needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77 

comparisons per successful search on the average. 

 

There are ten possible ways that an un-successful search may terminate depending upon 

the value of x. 

 
If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7) 

< x < a(8) the algorithm requires 3 element comparisons to determine that ‗x‘ is not 

present. For all of the remaining possibilities BINSRCH requires 4 element comparisons. 

 

Thus the average number of element comparisons for an unsuccessful search is: 

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4 

 
Time Complexity: 

 
The time complexity of binary search in a successful search is O(log n) and for an 
unsuccessful search is O(log n). 



2.2.1. A non-recursive program for binary search: 

 

# include <stdio.h> 

# include <conio.h> 
 

main() 

{ 

 

 
int number[25], n, data, i, flag = 0, low, high, mid; 
clrscr(); 

printf("\n Enter the number of elements: "); 
scanf("%d", &n); 

printf("\n Enter the elements in ascending order: "); 

for(i = 0; i < n; i++) 
scanf("%d", &number[i]); 

printf("\n Enter the element to be searched: "); 
scanf("%d", &data); 

low = 0; high = n-1; 

while(low <= high) 
{ 

mid = (low + high)/2; 

if(number[mid] == data) 
{ 

 

} 
else 

{ 

flag = 1; 

break; 

 

 
if(data < number[mid]) 

high = mid - 1; 

else 

 

} 

} 

 

low = mid + 1; 

if(flag == 1) 
printf("\n Data found at location: %d", mid + 1); 

else 

 

} 

 

printf("\n Data Not Found "); 

 

• A recursive program for binary search: 

 

# include <stdio.h> 

# include <conio.h> 
 

void bin_search(int a[], int data, int low, int high) 

{ 
int mid ; 

if( low <= high) 

{ 

mid = (low + high)/2; 

if(a[mid] == data) 
printf("\n Element found at location: %d ", mid + 1); 

else 
{ 

 

if(data < a[mid]) 

bin_search(a, data, low, mid-1); 

else 



 
} 

} 

else 

bin_search(a, data, mid+1, high); 

 
} 

void main() 

{ 

printf("\n Element not found"); 

int a[25], i, n, data; 

clrscr(); 

printf("\n Enter the number of elements: "); 
scanf("%d", &n); 

printf("\n Enter the elements in ascending order: "); 

for(i = 0; i < n; i++) 
scanf("%d", &a[i]); 

printf("\n Enter the element to be searched: "); 

scanf("%d", &data); 

bin_search(a, data, 0, n-1); 

getch(); 
} 

 

Bubble Sort: 

 

The bubble sort is easy to understand and program. The basic idea of bubble sort is to 

pass through the file sequentially several times. In each pass, we compare each element 

in the file with its successor i.e., X[i] with X[i+1] and interchange two element when 

they are not in proper order. We will illustrate this sorting technique by taking a specific 

example. Bubble sort is also called as exchange sort. 

 

Example: 

 

Consider the array x[n] which is stored in memory as shown below: 
 

X[0] X[1] X[2] X[3] X[4] X[5] 

33 44 22 11 66 55 

 

Suppose we want our array to be stored in ascending order. Then we pass through the 

array 5 times as described below: 
 

Pass 1: (first element is compared with all other elements). 

 

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] 

if X[i] > X[i+1]. The process is shown below: 
 

X[0] X[1] X[2] X[3] X[4] X[5] Remarks 

33 44 22 11 66 55  

 22 44    

  11 44   

   44 66  

    55 66 

33 22 11 44 55 66 

 

The biggest number 66 is moved to (bubbled up) the right most position in the array. 



X[0] X[1] X[2] Remarks 

Pass 2: (second element is compared). 

 

We repeat the same process, but this time we don‘t include X[5] into our comparisons. 

i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if 

X[i] > X[i+1]. The process is shown below: 
 

X[0] X[1] X[2] X[3] X[4] Remarks 

33 

22 

 

 

 

 
22 

22 

33 

11 

 

 
 

11 

11 

 

33 

33 

 

33 

44 

 

 
 

44 

44 

44 

55 

 

 

 

 
55 

55 

 

 

The second biggest number 55 is moved now to X[4]. 

 

Pass 3: (third element is compared). 

 

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, 

we move the third biggest number 44 to X[3]. 
 

X[0] X[1] X[2] X[3] Remarks 

22 11 33 44  

11 22   

 22 33  

  33 44 

11 22 33 44 

 

Pass 4: (fourth element is compared). 

 

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth 

biggest number 33 to X[2]. 

 

 

 
11 22 33 

11 22  

 22 33  

 
 

Pass 5: (fifth element is compared). 

 

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the 

fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11 in 

X[0]. Thus, we see that we can sort the array of size 6 in 5 passes. 

 

For an array of size n, we required (n-1) passes. 



Program for Bubble Sort: 

 
#include <stdio.h> 

#include <conio.h> 

void bubblesort(int x[], int n) 

{ 

int i, j, temp; 

for (i = 0; i < n; i++) 

{ 

for (j = 0; j < n–i-1 ; j++) 

{ 

if (x[j] > x[j+1]) 

{ 

temp = x[j]; 

x[j] = x[j+1]; 

x[j+1] = temp; 

} 
} 

} 

} 
 

main() 

{ 

 

 
 

 
 

 

 
 

 
} 

 

 
int i, n, x[25]; 

clrscr(); 

printf("\n Enter the number of elements: "); 
scanf("%d", &n); 

printf("\n Enter Data:"); 
for(i = 0; i < n ; i++) 

scanf("%d", &x[i]); 

bubblesort(x, n); 

printf ("\n Array Elements after sorting: "); 

for (i = 0; i < n; i++) 
printf ("%5d", x[i]); 

 

 

Time Complexity: 

 
The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) 

comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n
2
 

– 2n + 1, which is O(n
2
). Therefore bubble sort is very inefficient when there are more 

elements to sorting. 

 

Selection Sort: 

 

Selection sort will not require no more than n-1 interchanges. Suppose x is an array of 

size n stored in memory. The selection sort algorithm first selects the smallest element 

in the array x and place it at array position 0; then it selects the next smallest element 

in the array x and place it at array position 1. It simply continues this procedure until it 

places the biggest element in the last position of the array. 

 

The array is passed through (n-1) times and the smallest element is placed in its 

respective position in the array as detailed below: 



Pass 1: Find the location j of the smallest element in the array x [0], x[1], ........ x[n-1], 

and then interchange x[j] with x[0]. Then x[0] is sorted. 

 

Pass 2: Leave the first element and find the location j of the smallest element in the sub-

array x[1], x[2], . . . . x[n-1], and then interchange x[1] with x[j]. Then x[0], 

x[1] are sorted. 

 

Pass 3: Leave the first two elements and find the location j of the smallest element in 

the sub-array x[2], x[3], . . . . x[n-1], and then interchange x[2] with x[j]. Then 

x[0], x[1], x[2] are sorted. 

 
Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and then 

interchange x[j] and x[n-2]. Then x[0], x[1], . . . . x[n-2] are sorted. Of course, 
during this pass x[n-1] will be the biggest element and so the entire array is 
sorted. 

 

Time Complexity: 

 

In general we prefer selection sort in case where the insertion sort or the bubble sort 

requires exclusive swapping. In spite of superiority of the selection sort over bubble sort 

and the insertion sort (there is significant decrease in run time), its efficiency is also 

O(n
2
) for n data items. 

 
Example: 

 

Let us consider the following example with 9 elements to analyze selection Sort: 
 

1 2 3 4 5 6 7 8 9 Remarks 

65 70 75 80 50 60 55 85 45 find the first smallest element 

i        j swap a[i] & a[j] 

45 70 75 80 50 60 55 85 65 find the second smallest element 

 i   j     swap a[i] and a[j] 

45 50 75 80 70 60 55 85 65 Find the third smallest element 

  i    j   swap a[i] and a[j] 

45 50 55 80 70 60 75 85 65 Find the fourth smallest element 

   i  j    swap a[i] and a[j] 

45 50 55 60 70 80 75 85 65 Find the fifth smallest element 

    i    j swap a[i] and a[j] 

45 50 55 60 65 80 75 85 70 Find the sixth smallest element 

     i   j swap a[i] and a[j] 

45 50 55 60 65 70 75 85 80 Find the seventh smallest element 

      i j   swap a[i] and a[j] 

45 50 55 60 65 70 75 85 80 Find the eighth smallest element 

       i J swap a[i] and a[j] 

45 50 55 60 65 70 75 80 85 The outer loop ends. 



Non-recursive Program for selection sort: 

 

# include<stdio.h> 

# include<conio.h> 

 

void selectionSort( int low, int high ); 

int a[25]; 

int main() 

{ 

int num, i= 0; 

clrscr(); 

printf( "Enter the number of elements: " ); 

scanf("%d", &num); 
printf( "\nEnter the elements:\n" ); 

for(i=0; i < num; i++) 

scanf( "%d", &a[i] ); 
selectionSort( 0, num - 1 ); 

printf( "\nThe elements after sorting are: " ); 
for( i=0; i< num; i++ ) 

printf( "%d ", a[i] ); 

return 0; 
} 

 

void selectionSort( int low, int high ) 

{ 

int i=0, j=0, temp=0, minindex; 

for( i=low; i <= high; i++ ) 

{ 

minindex = i; 
for( j=i+1; j <= high; j++ ) 

{ 
if( a[j] < a[minindex] ) 

minindex = j; 

} 
temp = a[i]; 

a[i] = a[minindex]; 

a[minindex] = temp; 
} 

} 

 

 

Recursive Program for selection sort: 

 

#include <stdio.h> 

#include<conio.h> 

 
int x[6] = {77, 33, 44, 11, 66}; 

selectionSort(int); 
 

main() 

{ 

 

 
int i, n = 0; 

clrscr(); 

printf (" Array Elements before sorting: "); 

for (i=0; i<5; i++) 



printf ("%d ", x[i]); 

selectionSort(n); /* call selection sort */ 

printf ("\n Array Elements after sorting: "); 
for (i=0; i<5; i++) 

printf ("%d ", x[i]); 

} 
 

selectionSort( int n) 

{ 

int k, p, temp, min; 

if (n== 4) 

return (- 
1); min = x[n]; 
p = n; 
for (k = n+1; k<5; k++) 

{ 

if (x[k] <min) 

{ 

min = x[k]; 

p = k; 
} 

} 

temp = x[n]; /* interchange x[n] and x[p] */ x[n] = 
x[p]; 
x[p] = temp; 

n++ ; 

selectionSort(n); 

} 

 

 

Quick Sort: 

 

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960‘s. It was one of the 

first most efficient sorting algorithms. It is an example of a class of algorithms that work 

by ―divide and conquer‖ technique. 

 

The quick sort algorithm partitions the original array by rearranging it into two groups. 

The first group contains those elements less than some arbitrary chosen value taken 

from the set, and the second group contains those elements greater than or equal to the 

chosen value. The chosen value is known as the pivot element. Once the array has been 

rearranged in this way with respect to the pivot, the same partitioning procedure is 

recursively applied to each of the two subsets. When all the subsets have been 

partitioned and rearranged, the original array is sorted. 

 

The function partition() makes use of two pointers up and down which are moved toward 

each other in the following fashion: 

 

1. Repeatedly increase the pointer ‗up‘ until a[up] >= pivot. 

2. Repeatedly decrease the pointer ‗down‘ until a[down] <= pivot. 

3. If down > up, interchange a[down] with a[up] 

4. Repeat the steps 1, 2 and 3 till the ‗up‘ pointer crosses the ‗down‘ pointer. If 

‗up‘ pointer crosses ‗down‘ pointer, the position for pivot is found and place 
pivot element in ‗down‘ pointer position. 



The program uses a recursive function quicksort(). The algorithm of quick sort function 

sorts all elements in an array ‗a‘ between positions ‗low‘ and ‗high‘. 

 

1. It terminates when the condition low >= high is satisfied. This condition will 

be satisfied only when the array is completely sorted. 

 

2. Here we choose the first element as the ‗pivot‘. So, pivot = x[low]. Now it 

calls the partition function to find the proper position j of the element x[low] 
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], ............. x[j-1] 

and x[j+1], x[j+2], ...... x[high]. 

 
3. It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . . . 

x[j-1] between positions low and j-1 (where j is returned by the partition 

function). 

 

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high] 

between positions j+1 and high. 

 

The time complexity of quick sort algorithm is of O(n log n). 

 
 

Algorithm 
 

Sorts the elements a[p], . . . . . ,a[q] which reside in the global array a[n] into ascending 

order. The a[n + 1] is considered to be defined and must be greater than all elements in 

a[n]; a[n + 1] = + ∝ 
 

quicksort (p, q) 

{ 
if ( p < q ) then 

{ 
call j = PARTITION(a, p, q+1); // j is the position of the partitioning element 

call quicksort(p, j – 1); 

call quicksort(j + 1 , q); 
} 

} 
 

partition(a, m, p) 

{ 

v = a[m]; up = m; down = p; // a[m] is the partition element 

do 

{ 
repeat 

up = up + 1; 

until (a[up] > v); 
 

repeat 

down = down – 

1; until (a[down] < v); 

if (up < down) then call interchange(a, up, 

down); } while (up > down); 
 

a[m] = a[down]; 
a[down] = v; 
return (down); 

} 



interchange(a, up, down) 

{ 

p = a[up]; 

a[up] = a[down]; 

a[down] = p; 
} 

 

 

Example: 

 

Select first element as the pivot element. Move ‗up‘ pointer from left to right in search of 

an element larger than pivot. Move the ‗down‘ pointer from right to left in search of an 

element smaller than pivot. If such elements are found, the elements are swapped. 

 

This  process  continues  till  the  ‗up‘  pointer  crosses  the  ‗down‘  pointer.  If  ‗up‘  pointer 

crosses  ‗down‘  pointer,  the  position  for  pivot  is  found  and  interchange  pivot  and 

element at ‗down‘ position. 

 

Let us consider the following example with 13 elements to analyze quick sort: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks 

38 08 16 06 79 57 24 56 02 58 04 70 45  

pivot 
   

up 
     

down 
  swap up & 

down 

pivot    04      79    

pivot 
    

up 
  

down 
    swap up & 

down 

pivot     02   57      

pivot 
     

down up 
     swap pivot 

& down 

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)  

pivot 
    

down up 
      swap pivot 

& down 

(02 08 16 06 04) 24         

pivot, 
down 

up 
           swap pivot 

& down 

02 (08 16 06 04)          

 
pivot up 

 
down 

        swap up & 
down 

 pivot 04  16          

 pivot  down Up          

 
(06 04) 08 (16) 

        swap pivot 
& down 

 pivot down up           

 
(04) 06 

          swap pivot 
& down 

 04 
pivot, 

            

down, 
up 

    16 

pivot, 
down, 

up 

         

(02 04 06 08 16 24) 38 
       



       
(56 57 58 79 70 45) 

 

       pivot up    down swap up & 
down 

       pivot 45    57  

       
pivot down up 

   swap pivot 
& down 

       (45) 56 (58 79 70 57)  

       45       

swap pivot 
& down 

pivot, 
down, 

up 

         (58 
pivot 

79 
up 

70 
57) 

down 
swap up & 

down 

          57  79  

          down up   

         (57) 58 (70 79) swap pivot 
& down 

         57 

pivot, 
down, 

up 

    

           (70 79)  

           pivot, 
down 

up swap pivot 
& down 

           70    

            79 
pivot, 

down, 
up 

 

       
(45 56 57 58 70 79) 

 

02 04 06 08 16 24 38 45 56 57 58 70 79 
 

 

 
 

Recursive program for Quick Sort: 

 

# include<stdio.h> 

# include<conio.h> 

 
void quicksort(int, int); 
int partition(int, int); void 
interchange(int, int); int 
array[25]; 

 
int main() 

{ 

int num, i = 0; 
clrscr(); 

printf( "Enter the number of elements: " ); 

scanf( "%d", &num); 

printf( "Enter the elements: " ); 

for(i=0; i < num; i++) 

scanf( "%d", &array[i] ); 

quicksort(0, num -1); 

printf( "\nThe elements after sorting are: " ); 
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for(i=0; i < num; i++) 

printf("%d ", array[i]); 

return 0; 

} 
 

void quicksort(int low, int high) 

{ 

int pivotpos; 
if( low < high ) 

{ 

pivotpos = partition(low, high + 1); 

quicksort(low, pivotpos - 1); 

quicksort(pivotpos + 1, high); 
} 

} 
 

int partition(int low, int high) 

{ 
int pivot = array[low]; 

int up = low, down = high; 
 

do 
{ 

do 

up = up + 1; 

while(array[up] < pivot ); 
 

do 
down = down - 1; 

while(array[down] > pivot); 

 

if(up < down) interchange(up, 

down); 
 

} while(up < down); 

array[low] = array[down]; 

array[down] = pivot; 

return down; 
} 

 

void interchange(int i, int j) 
{ 

int temp; 

temp = array[i]; 

array[i] = array[j]; 

array[j] = temp; 

} 



Priority Queue, Heap and Heap Sort: 

 

Heap is a data structure, which permits one to insert elements into a set and also to find 

the largest element efficiently. A data structure, which provides these two operations, is 

called a priority queue. 

 

Max and Min Heap data structures: 

 

A max heap is an almost complete binary tree such that the value of each node is 

greater than or equal to those in its children. 

 

 

A min heap is an almost complete binary tree such that the value of each node is less 

than or equal to those in its children. 

 
 

Representation of Heap Tree: 

 
Since heap is a complete binary tree, a heap tree can be efficiently represented using 

one dimensional array. This provides a very convenient way of figuring out where children 

belong to. 

 
• The root of the tree is in location 1. 

• The left child of an element stored at location i can be found in location 2*i. 

• The right child of an element stored at location i can be found in location 2*i+1. 

• The parent of an element stored at location i can be found at location floor(i/2). 

 
The elements of the array can be thought of as lying in a tree structure. A heap tree 

represented using a single array looks as follows: 
 

X[1]  X[2]  X[3]  X[4] X[5]  X[6] X[7] X[8] 

65 45 60 40 25 50 55 30 

 
 

 

 
x[ 7] 

 

 

x[ 8 

x[ 1] 

65 x[ 3] 

x[ 2] 
45 60 

 
x[ 4] 40 x[ 5] 25 50 55 

] 30 He a p T re e 

95 15 

85 45 45 25 

75 25 35  55 65 35 75 

 65 Max heap 85 95 Min heap 



Operations on heap tree: 

 

The major operations required to be performed on a heap tree: 

 

1. Insertion, 

2. Deletion and 

3. Merging. 

 
Insertion into a heap tree: 

 

This operation is used to insert a node into an existing heap tree satisfying the properties 

of heap tree. Using repeated insertions of data, starting from an empty heap tree, one 

can build up a heap tree. 

 

Let us consider the heap (max) tree. The principle of insertion is that, first we have to 

adjoin the data in the complete binary tree. Next, we have to compare it with the data 

in its parent; if the value is greater than that at parent then interchange the values. This 

will continue between two nodes on path from the newly inserted node to the root node 

till we get a parent whose value is greater than its child or we reached the root. 

 
For illustration, 35 is added as the right child of 80. Its value is compared with its parent‘s 
value, and to be a max heap, parent‘s value greater than child‘s value is satisfied, hence 
interchange as well as further comparisons are no more required. 

 
As another illustration, let us consider the case of insertion 90 into the resultant heap 
tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it requires 
interchange. Next, 90 is compared with 80, another interchange takes place. Now, our 
process stops here, as 90 is now in root node. The path on which these comparisons and 
interchanges have taken places are shown by dashed line. 

 

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows: 

 
Max_heap_insert (a, n) 

{ 

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1] 

int i, n; 
i = n; 

item = a[n]; 

while ( (i > 1) and (a[ i/2 ] < item ) do 

{ 

a[i] = a[  i/2 ] ; // move the parent down 

i = i/2 ; 

} 

a[i] = item ; 

return true ; 

} 

 
 

Example: 

 

Form a heap using the above algorithm for the data: 40, 80, 35, 90, 45, 50, 70. 

1. Insert 40: 
 

40 



2. Insert 80: 

 

 

 
40 

 

 

3. Insert 35: 

 

 

 

 

 
 

4. 

 

 

 

 

 

4 

 

 
 

5. Insert 45: 
 

80 40 80 

80 40 

80 

40 35 

80 

Insert 90: 

90 

80 

90 

90 

40 35 
80 35 

0 

90 40 

90 

80 35 

40 45 

6. Insert 50: 
 

90 
50 

90 

80 35 80 50 

35 

40 45 50 40 45 35 

7. Insert 70: 

 
90 90 

70 

80 50 80 70 

50 

40 45 35 70 40 45 35 50 



Deletion of a node from heap tree: 

 

Any node can be deleted from a heap tree. But from the application point of view, deleting 

the root node has some special importance. The principle of deletion is as follows: 
 

• Read the root node into a temporary storage say, ITEM. 

 

• Replace the root node by the last node in the heap tree. Then re-heap the 

tree as stated below: 

 

• Let newly modified root node be the current node. Compare its value 

with the value of its two child. Let X be the child whose value is the 

largest. Interchange the value of X with the value of the current node. 
 

• Make X as the current node. 

 

• Continue re-heap, if the current node is not an empty node. 

 

The algorithm for the above is as follows: 

 

delmax (a, n, x) 
// delete the maximum from the heap a[n] and store it in x 

{ 

if (n = 0) then 

{ 

write (―heap is empty‖); 
return false; 

} 

x = a[1]; a[1] = a[n]; 

adjust (a, 1, n-1); 

return true; 
} 

 

adjust (a, i, n) 

// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to 

form a single heap, 1 < i < n. No node has an address greater than n or less than 1. // 
{ 

j = 2 *i ; 
item = a[i] ; 
while (j < n) do 

{ 

if ((j < n) and (a (j) < a (j + 1)) then j j + 1; 

// compare left and right child and let j be the larger 

child if (item > a (j)) then break; 

// a position for item is found else 

a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * j; 
 

} 
a [ j / 2 ] = item; 

} 
 

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 

26 and this node with data 26 is removed from the tree. Next 26 at root node is 

compared with its two child 45 and 63. As 63 is greater, they are interchanged. Now, 



26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are 

interchanged. Now, 26 appears as the leave node, hence re-heap is completed. 

De le t ing t he no de w it h dat a 99 Aft er De le t io n of no de w it h dat a 99 

 

 
Merging two heap trees: 

 
Consider, two heap trees H1 and H2. Merging the tree H2 with H1 means to include all 
the node from H2 to H1. H2 may be min heap or max heap and the resultant tree will be 
min heap if H1 is min heap else it will be max heap. Merging operation consists of two 
steps: Continue steps 1 and 2 while H2 is not empty: 

 

1. Delete the root node, say x, from H2. Re-heap H2. 

2. Insert the node x into H1 satisfying the property of H1. 

 

 

96 

 
93 67 

 

80 92 13 19 

 

38 59 45 92 
Resultant max heap after merging H1 and H2 

 

 
Application of heap tree: 

 

They are two main applications of heap trees known are: 

 

1. Sorting (Heap sort) and 

2. Priority queue implementation. 
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26 63 

99 

26 

63 

57 63 

45 
45 57 

26 

35 29 57 42 
35 29 26 42 

27 12 24 26 
27 12 24 

92 13 

59 67 19 80 

38  92 93 96 

H1: max heap H2: min heap 

+ 



HEAP SORT: 

 

A heap sort algorithm works by first organizing the data to be sorted into a special type 

of binary tree called a heap. Any kind of data can be sorted either in ascending order or 

in descending order using heap tree. It does this with the following steps: 

 

1. Build a heap tree with the given set of data. 

2. a. Remove the top most item (the largest) and replace it with the last 

element in the heap. 

b. Re-heapify the complete binary tree. 

c. Place the deleted node in the output. 

3. Continue step 2 until the heap tree is empty. 

 

 
Algorithm: 

 

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non- 

decreasing order. First transform the elements into a heap. 
 

heapsort(a, n) 

{ 
heapify(a, n); 

for i = n to 2 by – 1 do 

{ 

temp = a[i]; 

a[i] = a[1]; 

a[1] = temp; 

adjust (a, 1, i – 1); 
} 

} 
 

heapify (a, n) 

//Readjust the elements in a[n] to form a heap. 

{ 

for i n/2 to 1 by – 1 do adjust (a, i, n); 

} 
 

adjust (a, i, n) 

// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to 

form a single heap, 1 < i < n. No node has an address greater than n or less than 1. // 

{ 

j = 2 *i ; 

item = a[i] ; 
while (j < n) do 

{ 

if ((j < n) and (a (j) < a (j + 1)) then j j + 1; 

// compare left and right child and let j be the larger 

child if (item > a (j)) then break; 

// a position for item is found else 

a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * j; 
 

} 

a [ j / 2 ] = item; 

} 



Time Complexity: 

 

Each ‗n‘ insertion operations takes O(log k), where ‗k‘ is the number of elements in the 

heap at the time. Likewise, each of the ‗n‘ remove operations also runs in time O(log 

k), where ‗k‘ is the number of elements in the heap at the time. 

 

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst case. 

 

Thus, for ‗n‘ elements it takes O(n log n) time, so the priority queue sorting algorithm 

runs in O(n log n) time when we use a heap to implement the priority queue. 

 

Example 1: 

 

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data 

using heap sort. 

 

Solution: 

 
First form a heap tree from the given set of data and then sort by repeated deletion 
operation: 

40 40 

80 35 80 70 

90 45 50 70 90 45 50 35 

90 
40 

 70 
90 70 

 45 50 35 
80 45 50 35 

90 

80 70 

 45 50 35 



1. 

 

 

 

 

 

 

 

 
 

2. 

 

 

 

 

 

 

 

 

3. 

 

 

 

 

 

 

 
4. Exchange root 50 with the last element 40 of the array and re-heapify 

 
5. 

 

 

 

 

 

 

 

 

6. Exchange root 40 with the last element 35 of the array and re-heapify 
 

The sorted tree 

Exchange root 90 with the last element 35 of the array and re-heapify 

80 
35 80 

45 35 

80 70 45 70 

 45 

35 

50 90 40 35 50 90 

Exchange root 80 with the last element 50 of the array and re-heapify 

70 

50 70 

45 70 50 45 50 

 35 80 90 40 35 80 90 

Exchange root 70 with the last element 35 of the array and re-heapify 

50 

35 50 

35 

45 50 45 35 

 70 80 90 40 70 80 90 

Exchange root 45 with the last element 35 of the array and re-heapify 

40 

35 40 

 

40 45 35 45 

 70 80 90 50 70 80 90 

45 40 45 

40 

45 35 40 35 

 70 80 90 50 70 80 90 

35 

40 45 

 70 80 90 



Program for Heap Sort: 

 

void adjust(int i, int n, int a[]) 

{ 
int j, item; j 

= 2 * i; 

item = a[i]; 

while(j <= n) 

{ 

if((j < n) && (a[j] < a[j+1])) 

j++; 
if(item >= a[j]) 

break; 

else 

{ 

 

} 

} 

 

a[j/2] = a[j]; 

j = 2*j; 

a[j/2] = item; 

} 
 

void heapify(int n, int a[]) 

{ 
int i; 

for(i = n/2; i > 0; i--) 

adjust(i, n, a); 

} 
 

void heapsort(int n,int a[]) 

{ 

int temp, i; 

heapify(n, a); 
for(i = n; i > 0; i--) 

{ 
temp = a[i]; 

a[i] = a[1]; 

a[1] = temp; 

adjust(1, i - 1, a); 

} 

} 
 

void main() 

{ 

int i, n, a[20]; 
clrscr(); 

printf("\n How many element you want: "); 

scanf("%d", &n); 

printf("Enter %d elements: ", 
n); for (i=1; i<=n; i++) 

scanf("%d", &a[i]); 
heapsort(n, a); 

printf("\n The sorted elements are: \n"); 

for (i=1; i<=n; i++) 

printf("%5d", 
a[i]); getch(); 

} 



Priority queue implementation using heap tree: 

 

Priority queue can be implemented using circular array, linked list etc. Another simplified 

implementation is possible using heap tree; the heap, however, can be represented using 

an array. This implementation is therefore free from the complexities of circular array 

and linked list but getting the advantages of simplicities of array. 

 

As heap trees allow the duplicity of data in it. Elements associated with their priority 

values are to be stored in from of heap tree, which can be formed based on their priority 

values. The top priority element that has to be processed first is at the root; so it can be 

deleted and heap can be rebuilt to get the next element to be processed, and so on. As 

an illustration, consider the following processes with their priorities: 
 

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Priority 5 4 3 4 5 5 3 2 1 5 

 

These processes enter the system in the order as listed above at time 0, say. Assume 
that a process having higher priority value will be serviced first. The heap tree can be 
formed considering the process priority values. The order of servicing the process is 
successive deletion of roots from the heap. 

 

Exercises 

 

1. Write a recursive ―C‖ function to implement binary search and compute its 

time complexity. 
 

2. Find the expected number of passes, comparisons and exchanges for bubble 

sort when the number of elements is equal to ―10‖. Compare these results 

with the actual number of operations when the given sequence is as follows: 

7, 1, 3, 4, 10, 9, 8, 6, 5, 2. 

 

3. An array contains ―n‖ elements of numbers. The several elements of this 

array may contain the same number ―x‖. Write an algorithm to find the total 

number of elements which are equal to ―x‖ and also indicate the position of 

the first such element in the array. 

 

4. When a ―C‖ function to sort a matrix row-wise and column-wise. Assume 

that the matrix is represented by a two dimensional array. 

 

5. A very large array of elements is to be sorted. The program is to be run on a 
personal computer with limited memory. Which sort would be a better choice: 
Heap sort or Quick sort? Why? 

 

6. Here is an array of ten integers: 5 3 8 9 1 7 0 2 6 4 

Suppose we partition this array using quicksort's partition function and 

using 5 for the pivot. Draw the resulting array after the partition finishes. 

 

7. Here is an array which has just been partitioned by the first step of quicksort: 

3, 0, 2, 4, 5, 8, 7, 6, 9. Which of these elements could be the pivot? (There 

may be more than one possibility!) 

 

8. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, 

and 2, one at a time, into an initially empty binary heap. 

 

9. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort. 



10. Show how heap sort processes the input 142, 543, 123, 65, 453, 879, 572, 

434, 111, 242, 811, 102. 

 
11. Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quick sort with median-of-three 

partitioning and a cutoff of 3. 

 
 

Multiple Choice Questions 
 

1. What is the worst-case time for serial search finding a single item in an [ D ] 

array? 
A. Constant time C. Logarithmic time 

B. Quadratic time D. Linear time 

 

2. What is the worst-case time for binary search finding a single item in an [ B ] 

array? 
A. Constant time C. Logarithmic time 

B. Quadratic time D. Linear time 

 
3. What additional requirement is placed on an array, so that binary search [ C ] 

may be used to locate an entry? 

A. The array elements must form a heap. 
B. The array must have at least 2 entries 

C. The array must be sorted. 

D. The array's size must be a power of two. 

 

4. Which searching can be performed recursively ? [ B ] 

A. linear search C. Binary search 

B. both D. none 

 

5. Which searching can be performed iteratively ? [ B ] 
A. linear search C. Binary search 

B. both D. none 
 

6. In a selection sort of n elements, how many times is the swap function [ B ] 

called in the complete execution of the algorithm? 
A. 1 C. n - 1 

B. n
2 

D. n log n 

7. Selection sort and quick sort both fall into the same category of sorting [ B ] 

algorithms. What is this category? 
A. O(n log n) sorts C. Divide-and-conquer sorts 

B. Interchange sorts D. Average time is quadratic 

 

8. Suppose that a selection sort of 100 items has completed 42 iterations of [ C ] 

the main loop. How many items are now guaranteed to be in their final spot 
(never to be moved again)? 

A. 21 C. 42 

B. 41 D. 43 
 

9. When is insertion sort a good choice for sorting an array? [ B ] 

A. Each component of the array requires a large amount of memory 

B. The array has only a few items out of place 

C. Each component of the array requires a small amount of memory 
D. The processor speed is fast 



10. What is the worst-case time for quick sort to sort an array of n elements? [ D ] 
A. O(log n) C. O(n log n) 

B. O(n) D. O(n²) 

 

11. Suppose we are sorting an array of eight integers using quick sort, and we [ A ] 

have just finished the first partitioning with the array looking like this: 

2 5 1 7 9 12 11 10 Which statement is correct? 

A. The pivot could be either the 7 or the 9. 

B. The pivot is not the 7, but it could be the 9. 

C. The pivot could be the 7, but it is not the 9. 

D. Neither the 7 nor the 9 is the pivot 

 

12. What is the worst-case time for heap sort to sort an array of n elements? [ C ] 

A. O(log n) C. O(n log n) 

B. O(n) D. O(n²) 

 

13. Suppose we are sorting an array of eight integers using heap sort, and we [ B ] 

have just finished one of the reheapifications downward. The array now 
looks like this: 6 4 5 1 2 7 8 

How many reheapifications downward have been performed so far? 

A. 1 C. 2 

B. 3 or 4 D. 5 or 6 

 

14. Time complexity of inserting an element to a heap of n elements is of the [  A ] 

order of 

A. log2 n C. n log2n 

B. n
2 

D. n 

15. A min heap is the tree structure where smallest element is available at the [ B ] 

A. leaf C. intermediate parent 

B. root D. any where 

 

16. In the quick sort method , a desirable choice for the portioning element will [ C ] 

be 
A. first element of list C. median of list 

B. last element of list D. any element of list 

 
17. Quick sort is also known as [ D ] 

A. merge sort C. heap sort 

B. bubble sort D. none 

 

18. Which design algorithm technique is used for quick sort . [ A ] 

A. Divide and conqueror C. backtrack 

B. greedy D. dynamic programming 
 

19. Which among the following is fastest sorting technique (for unordered data) [  C ] 
A. Heap sort C. Quick Sort 

B. Selection Sort D. Bubble sort 

 

20. In which searching technique elements are eliminated by half in each pass . [  C ] 
A. Linear search C. Binary search 

B. both D. none 

 
21. Running time of Heap sort algorithm is -----. [  B ] 

A. O( log2 n) C. O(n) 

B. A. O( n log2 n) D. O(n
2
) 



22. Running time of Bubble sort algorithm is -----. [  D ] 

A. O( log2 n) C. O(n) 

B. A. O( n log2 n) D. O(n
2
) 

23. Running time of Selection  sort algorithm is -----. [ D ] 

A. O( log2 n) C. O(n) 

B. A. O( n log2 n) D. O(n
2
) 

24. The Max heap constructed from the list of numbers 30,10,80,60,15,55 is [ C ] 

A. 60,80,55,30,10,15 C. 80,55,60,15,10,30 

B. 80,60,55,30,10,15 D. none 

 

25. The number of swappings needed to sort the numbers 8,22,7,9,31,19,5,13 [  D ] 

in ascending order using bubble sort is 
A. 11 
B. 12 

C. 13 
D. 14 

 
26. Time complexity of insertion sort algorithm in best case is 

A. O( log2 n) C. O(n) 

B. A. O( n log2 n) D. O(n
2
) 

 

[ 

 

C 

 

] 

27. Binary search algorithm performs efficiently on a 

A. linked list C. array 

B. both D. none 

[ C ] 

28. Which is a stable sort ? 

A. Bubble sort C. Quick sort 

B. Selection Sort D. none 

[ D ] 

29. Heap is a good data structure to implement 

A. priority Queue C. linear queue 

B. Deque D. none 

[ A ] 

30. Always Heap is a 

A. complete Binary tree C. Full Binary tree 
B. Binary Search Tree D. none 

[ A ] 



Chapter 

4 
Stack and Queue 

 

 

There are certain situations in computer science that one wants to restrict 

insertions and deletions so that they can take place only at the beginning 

or the end of the list, not in the middle. Two of such data structures that 

are useful are: 

 

• Stack. 

• Queue. 

Linear lists and arrays allow one to insert and delete elements at any 

place in the list i.e., at the beginning, at the end or in the middle. 

 

• STACK: 

 
A stack is a list of elements in which an element may be inserted or deleted only at one 

end, called the top of the stack. Stacks are sometimes known as LIFO (last in, first out) 
lists. 

 
As the items can be added or removed only from the top i.e. the last item to be added 

to a stack is the first item to be removed. 

 

The two basic operations associated with stacks are: 

 

1.5. Push: is the term used to insert an element into a stack. 

1.6. Pop: is the term used to delete an element from a stack. 

 
―Push‖ is the term used to insert an element into a stack. ―Pop‖ is the term used to delete 

an element from the stack. 

 

All insertions and deletions take place at the same end, so the last element added to the 

stack will be the first element removed from the stack. When a stack is created, the stack 

base remains fixed while the stack top changes as elements are added and removed. The 

most accessible element is the top and the least accessible element is the bottom of the 

stack. 

 

• Representation of Stack: 

 

Let us consider a stack with 6 elements capacity. This is called as the size of the stack. 

The number of elements to be added should not exceed the maximum size of the stack. 

If we attempt to add new element beyond the maximum size, we will encounter a stack 

overflow condition. Similarly, you cannot remove elements beyond the base of the stack. 

If such is the case, we will reach a stack underflow condition. 

 

When an element is added to a stack, the operation is performed by push(). Figure 4.1 

shows the creation of a stack and addition of elements using push(). 
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Figure 4.1. Push operations on stack 
 

When an element is taken off from the stack, the operation is performed by pop(). Figure 

4.2 shows a stack initially with three elements and shows the deletion of elements using 
pop(). 
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Figure 4.2. Pop operations on stack 

 

 
Source code for stack operations, using array: 

 
1.5. include <stdio.h> 
1.6. include <conio.h> 
1.7. include <stdlib.h> 

1.8. define MAX 6 

int stack[MAX]; 

int top = 0; 
int menu() 
{ 

int ch; 
clrscr(); 

printf("\n … Stack operations using ARRAY... "); 
printf("\n -----------********** ------------ \n"); 
printf("\n 1. Push "); 

printf("\n 2. Pop "); 
printf("\n 3. Display"); 
printf("\n 4. Quit "); 
printf("\n Enter your choice: 
"); scanf("%d", &ch); 

return ch; 
} 

void display() 
{ 

int i; 
if(top == 0) 
{ 

printf("\n\nStack empty.."); 
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} 
else 

{ 

 

 
} 

} 

return; 

 

 
printf("\n\nElements in stack:"); 

for(i = 0; i < top; i++) 

printf("\t%d", stack[i]); 

 

void pop() 

{ 
if(top == 0) 

{ 

 

} 

else 

 
} 

printf("\n\nStack Underflow.."); 
return; 

 

printf("\n\npopped element is: %d ", stack[--top]); 

 

void push() 

{ 
int data; 
if(top == MAX) 

{ 

 

} 
else 

{ 

 
 

 

 
} 

} 

printf("\n\nStack Overflow.."); 
return; 

 

 
printf("\n\nEnter data: "); 
scanf("%d", &data); 
stack[top] = data; 
top = top + 1; 

printf("\n\nData Pushed into the stack"); 

 

void main() 

{ 

int ch; 
do 
{ 

 

 
ch = menu(); 
switch(ch) 
{ 

case 1: 

 

case 2: 

 

case 3: 

 
push(); 
break; 

 

pop(); 

break; 
 

display(); 
break; 

 

 

 
} 
getch(); 

} while(1); 

} 

case 4:  
exit(0); 



\{ Linked List Implementation of Stack: 

 

We can represent a stack as a linked list. In a stack push and pop operations are 

performed at one end called top. We can perform similar operations at one end of list 

using top pointer. The linked stack looks as shown in figure 4.3. 
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Figure 4.3. Linked stack 

representation 

 
Source code for stack operations, using linked list: 

 
include <stdio.h> 
include <conio.h> 
include <stdlib.h> 

 

struct stack 
{ 

int data; 
struct stack *next; 

}; 
 

void push(); 

void pop(); 
void display(); 
typedef struct stack node; 
node *start=NULL; 
node *top = NULL; 

 
node* getnode() 
{ 

node *temp; 

temp=(node *) malloc( sizeof(node)) ; 

printf("\n Enter data "); 
scanf("%d", &temp -> data); 
temp -> next = NULL; return 
temp; 

} 
void push(node *newnode) 
{ 

node *temp; 
if( newnode == NULL ) 
{ 

printf("\n Stack Overflow.."); 
return; 

} 



if(start == NULL) 

{ 

 

} 

else 

{ 

 
 

 

 
} 

start = newnode; 
top = newnode; 

 

 
temp = start; 
while( temp -> next != NULL) 

temp = temp -> next; 

temp -> next = newnode; 
top = newnode; 

printf("\n\n\t Data pushed into stack"); 
} 

void pop() 

{ 
node *temp; 
if(top == NULL) 
{ 

printf("\n\n\t Stack 
underflow"); return; 

} 

temp = start; 
if( start -> next == NULL) 

{ 

 
 

 
} 

else 

{ 

printf("\n\n\t Popped element is %d ", top -> data); 
start = NULL; 

free(top); 
top = NULL; 

 

 
while(temp -> next != top) 
{ 

temp = temp -> next; 

} 
temp -> next = NULL; 

printf("\n\n\t Popped element is %d ", top -> data); 
free(top); 
top = temp; 

} 
} 
void display() 

{ 
node *temp; 
if(top == NULL) 
{ 

 
} 
else 

{ 

printf("\n\n\t\t Stack is empty "); 

 

 
temp = start; 
printf("\n\n\n\t\t Elements in the stack: \n"); 
printf("%5d ", temp -> data); 
while(temp != top) 

{ 

temp = temp -> next; 
printf("%5d ", temp -> data); 

} 
} 

} 
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char menu() 

{ 
char ch; 

clrscr(); 

printf("\n \tStack operations using pointers.. "); 
printf("\n -----------********** ------------ \n"); 
printf("\n 1. Push "); 

printf("\n 2. Pop "); 
printf("\n 3. Display"); 
printf("\n 4. Quit "); 
printf("\n Enter your choice: 
"); ch = getche(); 
return ch; 

} 
 

void main() 
{ 

char ch; 

node *newnode; 
do 
{ 

ch = menu(); 
switch(ch) 
{ 

case '1' : 
newnode = getnode(); 

push(newnode); break; 

 

case '2' : 

pop(); 

break; 
case '3' : 

display(); 
break; 

case '4': 

 
} 

 
return; 

getch(); 

} while( ch != '4' ); 

} 

 
 

Algebraic Expressions: 

 

An algebraic expression is a legal combination of operators and operands. Operand is the 

quantity on which a mathematical operation is performed. Operand may be a variable 

like x, y, z or a constant like 5, 4, 6 etc. Operator is a symbol which signifies a 

mathematical or logical operation between the operands. Examples of familiar operators 

include +, -, *, /, ^ etc. 

 

An algebraic expression can be represented using three different notations. They are 

infix, postfix and prefix notations: 

 

Infix: It is the form of an arithmetic expression in which we fix (place) the 

arithmetic operator in between the two operands. 

 

Example: (A + B) * (C - D) 

 
Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic 

operator before (pre) its two operands. The prefix notation is called as 
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polish notation (due to the polish mathematician Jan Lukasiewicz in the 

year 1920). 

 

Example: * + A B – C D 

 

Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic 

operator after (post) its two operands. The postfix notation is called as suffix 

notation and is also referred to reverse polish notation. 

 

Example: A B + C D - * 

 

The three important features of postfix expression are: 

 

1. The operands maintain the same order as in the equivalent infix expression. 

 

2. The parentheses are not needed to designate the expression un- 

ambiguously. 

 

3. While evaluating the postfix expression the priority of the operators is no 

longer relevant. 

 

We consider five binary operations: +, -, *, / and $ or ↑ (exponentiation). For these 

binary operations, the following in the order of precedence (highest to lowest): 

 

 

OPERATOR PRECEDENCE VALUE 

Exponentiation ($ or ↑ or ^) Highest 3 

*, / Next highest 2 

+, - Lowest 1 

 

 

 
Converting expressions using Stack: 

 

Let us convert the expressions from one type to another. These can be done as follows: 
 

1 Infix to postfix 
2 Infix to prefix 

3 Postfix to infix 

4 Postfix to prefix 
5 Prefix to infix 

6 Prefix to postfix 

 

Conversion from infix to postfix: 

 

Procedure to convert from infix expression to postfix expression is as follows: 

 

1. Scan the infix expression from left to right. 

 

2. a) If the scanned symbol is left parenthesis, push it onto the stack. 

b) If the scanned symbol is an operand, then place directly in the postfix 

expression (output). 
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1.9. If the symbol scanned is a right parenthesis, then go on popping all 

the items from the stack and place them in the postfix expression till 

we get the matching left parenthesis. 

1.10. If the scanned symbol is an operator, then go on removing all the 

operators from the stack and place them in the postfix expression, if 

and only if the precedence of the operator which is on the top of the 

stack is greater than (or greater than or equal) to the precedence of 

the scanned operator and push the scanned operator onto the stack 

otherwise, push the scanned operator onto the stack. 

 

Example 1: 

 
Convert ((A – (B + C)) * D) ↑ (E + F) infix expression to postfix form: 

 

SYMBOL POSTFIX STRING STACK REMARKS 

(  (  

(  ( (  

A A ( (  

- A ( ( -  

( A ( ( - (  

B A B ( ( - (  

+ A B ( ( - ( +  

C A B C ( ( - ( +  

) A B C + ( ( -  

) A B C + - (  

* A B C + - ( *  

D A B C + - D ( *  

) A B C + - D *   

↑ A B C + - D * ↑  

( A B C + - D * ↑ (  

E A B C + - D * E ↑ (  

+ A B C + - D * E ↑ ( +  

F A B C + - D * E F ↑ ( +  

) A B C + - D * E F + ↑  

End of 
string 

 
A B C + - D * E F + ↑ 

The input is now empty. Pop the output symbols 
from the stack until it is empty. 

 

Example 2: 

 

Convert a + b * c + (d * e + f) * g the infix expression into postfix form. 

 

SYMBOL POSTFIX STRING STACK REMARKS 

a a   

+ a +  

b a b +  
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* a b + *  

c a b c + *  

+ a b c * + +  

( a b c * + + (  

d a b c * + d + (  

* a b c * + d + ( *  

e a b c * + d e + ( *  

+ a b c * + d e * + ( +  

f a b c * + d e * f + ( +  

) a b c * + d e * f + +  

* a b c * + d e * f + + *  

g a b c * + d e * f + g + *  

End of 
string 

a b c * + d e * f + g * + The input is now empty. Pop the output symbols 
from the stack until it is empty. 

 

 
Example 3: 

 

Convert the following infix expression A + B * C – D / E * H into its equivalent postfix 

expression. 

 

SYMBOL POSTFIX STRING STACK REMARKS 

A A   

+ A +  

B A B +  

* A B + *  

C A B C + *  

- A B C * + -  

D A B C * + D -  

/ A B C * + D - /  

E A B C * + D E - /  

* A B C * + D E / - *  

H A B C * + D E / H - *  

End of 
string 

 
A B C * + D E / H * - 

The input is now empty. Pop the output symbols from 
the stack until it is empty. 

 

Example 4: 

 

Convert the following infix expression A + (B * C – (D / E ↑ F) * G) * H into its 

equivalent postfix expression. 

 

SYMBOL POSTFIX STRING STACK REMARKS 

A A   

+ A +  
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( A + (  

B A B + (  

* A B + ( *  

C A B C + ( *  

- A B C * + ( -  

( A B C * + ( - (  

D A B C * D + ( - (  

/ A B C * D + ( - ( /  

E A B C * D E + ( - ( /  

↑ A B C * D E + ( - ( / ↑  

F A B C * D E F + ( - ( / ↑  

) A B C * D E F ↑ / + ( -  

* A B C * D E F ↑ / + ( - *  

G A B C * D E F ↑ / G + ( - *  

) A B C * D E F ↑ / G * - +  

* A B C * D E F ↑ / G * - + *  

H A B C * D E F ↑ / G * - H + *  

End of 
string 

A B C * D E F ↑ / G * - H * + The input is now empty. Pop the output 
symbols from the stack until it is empty. 

 

 
1. Program to convert an infix to postfix expression: 

 
# include <string.h> 

 
char postfix[50]; 
char infix[50]; 

char opstack[50]; /* operator stack */ int i, j, top = 
0; 

 

int lesspriority(char op, char op_at_stack) 
{ 

int k; 
int pv1; /* priority value of op */ 

int pv2; /* priority value of op_at_stack */ 

char operators[] = {'+', '-', '*', '/', '%', '^', '(' }; 

int priority_value[] = {0,0,1,1,2,3,4}; 

if( op_at_stack == '(' ) 
return 0; 

for(k = 0; k < 6; k ++) 

{ 
if(op == operators[k]) 

pv1 = priority_value[k]; 

} 
for(k = 0; k < 6; k ++) 
{ 

if(op_at_stack == operators[k]) 
pv2 = priority_value[k]; 

} 
if(pv1 < pv2) 

return 1; 

else 

 

} 

 
return 0; 
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void push(char op) /* op - operator */ 

{ 

if(top == 0) 
{ 

 

} 
else 
{ 

opstack[top] = op; 

top++; 

 

 
if(op != '(' ) 
{ 

while(lesspriority(op, opstack[top-1]) == 1 && top > 0) 
{ 

postfix[j] = opstack[-- 
top]; j++; 

} 

} 

opstack[top] = op; /* pushing onto stack */ 
top++; 

} 

} 
 

pop() 

{ 

 

 
while(opstack[--top] != '(' ) /* pop until '(' comes */ 

{ 

postfix[j] = opstack[top]; 
j++; 

} 

} 
 

void main() 

{ 
char ch; 

clrscr(); 

printf("\n Enter Infix Expression : "); 
gets(infix); 
while( (ch=infix[i++]) != ‗\0‘) 

{ 
switch(ch) 

{ 
case ' ' : break; 

case '(' : 
case  '+' : 

case  '-'  : 

case  '*'  : 

case  '/'  : 

case  '^' : 

case '%' : 

push(ch); /* check priority and push */ break; 
 

case ')' : 

pop(); 
break; 

default : 

postfix[j] = ch; 
j++; 

} 
} 

while(top >= 0) 
{ 

postfix[j] = opstack[--top]; 
j++; 

/* before pushing the operator 
'op' into the stack check priority 
of op with top of opstack if less 
then pop the operator from stack 
then push into postfix string else 
push op onto stack itself */ 



 

} 

postfix[j] = '\0'; 

printf("\n Infix Expression : %s ", infix); 
printf("\n Postfix Expression : %s ", postfix); 
getch(); 

} 

 
 

• Conversion from infix to prefix: 

 
The precedence rules for converting an expression from infix to prefix are identical. The 
only change from postfix conversion is that traverse the expression from right to left and 
the operator is placed before the operands rather than after them. The prefix form of a 
complex expression is not the mirror image of the postfix form. 

 

Example 1: 

 

Convert the infix expression A + B - C into prefix expression. 

 

SYMBOL 
PREFIX 
STRING 

STACK REMARKS 

C C   

- C -  

B B C -  

+ B C - +  

A A B C - +  

End of 
string 

- + A B C The input is now empty. Pop the output symbols from the 
stack until it is empty. 

 

Example 2: 

 

Convert the infix expression (A + B) * (C - D) into prefix expression. 

 

SYMBOL 
PREFIX 
STRING 

STACK REMARKS 

)  )  

D D )  

- D ) -  

C C D ) -  

( - C D   

* - C D *  

) - C D * )  

B B - C D * )  

+ B - C D * ) +  

A A B - C D * ) +  

( + A B – C D *  

End of 

string 

* + A B – C D The input is now empty. Pop the output symbols from the 

stack until it is empty. 



 

Example 3: 

 

Convert the infix expression A ↑ B * C – D + E / F / (G + H) into prefix expression. 

 

SYMBOL PREFIX STRING STACK REMARKS 

)  )  

H H )  

+ H ) +  

G G H ) +  

( + G H   

/ + G H /  

F F + G H /  

/ F + G H / /  

E E F + G H / /  

+ / / E F + G H +  

D D / / E F + G H +  

- D / / E F + G H + -  

C C D / / E F + G H + -  

* C D / / E F + G H + - *  

B B C D / / E F + G H + - *  

↑ B C D / / E F + G H + - * ↑  

A A B C D / / E F + G H + - * ↑  

End of 
string 

+ - * ↑ A B C D / / E F + G H The input is now empty. Pop the output 
symbols from the stack until it is empty. 

 

1. Program to convert an infix to prefix expression: 

 
11. include <conio.h> 

12. include <string.h> 

 
char prefix[50]; 

char infix[50]; 

char opstack[50]; /* operator stack */ int j, top = 0; 

 

void insert_beg(char ch) 
{ 

int k; 
if(j == 0) 

prefix[0] = ch; 

else 

{ 

 

 
} 

j++; 

} 

 

for(k = j + 1; k > 0; k--) 

prefix[k] = prefix[k - 1]; 

prefix[0] = ch; 



 

int lesspriority(char op, char op_at_stack) 

{ 
int k; 
int pv1; /* priority value of op */ 

int pv2; /* priority value of op_at_stack */ 

char operators[] = {'+', '-', '*', '/', '%', '^', ')'}; 
int priority_value[] = {0, 0, 1, 1, 2, 3, 4}; 
if(op_at_stack == ')' ) 

return 0; 
for(k = 0; k < 6; k ++) 

{ 
if(op == operators[k]) 

pv1 = priority_value[k]; 

} 
for(k = 0; k < 6; k ++) 

{ 
if( op_at_stack == operators[k] ) 

pv2 = priority_value[k]; 

} 
if(pv1 < pv2) 

return 1; 

else 

 
} 

 
return 0; 

 

void push(char op) /* op – operator */ 
{ 

if(top == 0) 

{ 

 

} 
else 

{ 

opstack[top] = op; 
top++; 

 

 
if(op != ')') 

{ 

/* before pushing the operator 'op' into the stack check priority of op with 
top of operator stack if less pop the operator from stack then push into postfix 
string else push op onto stack itself */ 

 
while(lesspriority(op, opstack[top-1]) == 1 && top > 0) 
{ 

insert_beg(opstack[--top]); 

} 
} 

opstack[top] = op; /* pushing onto stack */ 

top++; 
} 

} 
 

void pop() 
{ 

while(opstack[--top] != ')') /* pop until ')' comes; */ 
insert_beg(opstack[top]); 

} 

 

void main() 
{ 

char ch; 
int l, i = 0; 
clrscr(); 

printf("\n Enter Infix Expression : "); 



 

gets(infix); 
l = strlen(infix); 

while(l > 0) 

{ 

ch = infix[-- 
l]; switch(ch) 
{ 

case ' ' : break; 

case ')' : 
case  '+' : 

case  '-'  : 

case  '*'  : 

case  '/'  : 

case  '^' : 

case '%' : 

push(ch); /* check priority and push */ break; 
 

case '(' : 

pop(); 
break; 

default : 

insert_beg(ch); 

} 
} 
while( top > 0 ) 

{ 
insert_beg( opstack[--top] 
); j++; 

} 

prefix[j] = '\0'; 

printf("\n Infix Expression : %s ", infix); 
printf("\n Prefix Expression : %s ", prefix); 

getch(); 
} 

 

 
 

Conversion from postfix to infix: 

 

Procedure to convert postfix expression to infix expression is as follows: 

 

1. Scan the postfix expression from left to right. 

 

2. If the scanned symbol is an operand, then push it onto the stack. 

3. If the scanned symbol is an operator, pop two symbols from the stack and 

create it as a string by placing the operator in between the operands and 

push it onto the stack. 

 

4. Repeat steps 2 and 3 till the end of the expression. 

 

Example: 

 

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its 

equivalent infix expression. 



 

Symbol 

 
A 

B 

C 

* 

 
D 

E 

Stack Remarks 

Push A 

Push B 

Push C 

Pop two operands and place the 
operator in between the operands and 
push the string. 

Push D 

Push E 

F 

 
^ 

 

/ 

G 

* 

 

- 

H 

* 

 
+ 

End of 

string 

Push F 

Pop two operands and place the 
operator in between the operands and 
push the string. 
Pop two operands and place the 
operator in between the operands and 
push the string. 

Push G 

Pop two operands and place the 
operator in between the operands and 

push the string. 
Pop two operands and place the 
operator in between the operands and 
push the string. 

Push H 

Pop two operands and place the 
operator in between the operands and 
push the string. 

 

 

The input is now empty. The string formed is infix. 

 

 

 
Program to convert postfix to infix expression: 

 
# include <stdio.h> 
# include <conio.h> 

# include <string.h> 
# define MAX 100 

 
void pop (char*); 
void push(char*); 

 

char stack[MAX] [MAX]; 
int top = -1; 

(A + (((B*C) – ((D/(E^F))*G)) * H)) 

A     

 
A B    

 
A B C   

 

A (B*C)    

 

A (B*C) D   

 
A (B*C) D E  

 
A (B*C) D E F 

 

A (B*C) D (E^F)  

 

A (B*C) (D/(E^F))  

 

A (B*C) (D/(E^F)) G  

 

A (B*C) ((D/(E^F))*G)  

 

A ((B*C) – ((D/(E^F))*G))  

 

A ((B*C) – ((D/(E^F))*G)) H 

 

A (((B*C) – ((D/(E^F))*G)) * H)  

 



 

void main() 

{ 

char s[MAX], str1[MAX], str2[MAX], str[MAX]; 
char s1[2],temp[2]; 

int i=0; 
clrscr( ) ; 

printf("\Enter the postfix expression; 
"); gets(s); 
while (s[i]!='\0') 

{ 

if(s[i] == ' ' ) /*skip whitespace, if any*/ 
i++; 

if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/') 
{ 

 
 
 

 
 

 
 
 

 
 

 
} 
else 

{ 

 

 

 
} 

i++; 
} 

pop(str1); 
pop(str2); 
temp[0] ='('; 

temp[1] ='\0'; 
strcpy(str, temp); 
strcat(str, str2); 
temp[0] = s[i]; 
temp[1] = '\0'; 
strcat(str,temp); 
strcat(str, str1); 
temp[0] =')'; 
temp[1] ='\0'; 
strcat(str,temp); 
push(str); 

 
 

temp[0]=s[i]; 

temp[1]='\0'; 
strcpy(s1, 
temp); push(s1); 

printf("\nThe Infix expression is: %s", stack[0]); 

 

} 
 

void pop(char *a1) 

{ 
strcpy(a1,stack[top]); 
top--; 

} 
 

void push (char*str) 
{ 

if(top == MAX - 1) 

printf("\nstack is full"); 
else 
{ 

 

} 

} 

 

top++; 
strcpy(stack[top], str); 



 

Conversion from postfix to prefix: 

 

Procedure to convert postfix expression to prefix expression is as follows: 

 

1. Scan the postfix expression from left to right. 

 

2. If the scanned symbol is an operand, then push it onto the stack. 

 
3. If the scanned symbol is an operator, pop two symbols from the stack and 

create it as a string by placing the operator in front of the operands and 
push it onto the stack. 

 

5. Repeat steps 2 and 3 till the end of the expression. 

 

Example: 

 

Convert the following postfix expression A B C * D E F ^ / G * - H * + into its 

equivalent prefix expression. 

 
 

Symbol    Stack Remarks 

A A     Push A 
      

B A B    Push B 
      

C A B C   Push C 
 

* 

D 

E 

F 

^ 

 
/ 

G 

* 

 
- 

H 

* 

 
+ 

End of 
string 

Pop two operands and place the operator 
in front the operands and push the string. 

Push D 

Push E 

Push F 

Pop two operands and place the operator 
in front the operands and push the string. 

Pop two operands and place the operator 
in front the operands and push the string. 

Push G 

Pop two operands and place the operator 
in front the operands and push the string. 

Pop two operands and place the operator 
in front the operands and push the string. 

Push H 

Pop two operands and place the operator 
in front the operands and push the string. 

 

 
 

The input is now empty. The string formed is prefix. 

+A*-*BC*/D^EFGH 

A *BC    

 
A *BC D   

 
A *BC D E  

 
A *BC D E F 

 
A *BC D ^EF  

 
A *BC /D^EF  

 
A *BC /D^EF G  

 
A *BC */D^EFG  

 
A - *BC*/D^EFG  

 
A - *BC*/D^EFG H  

 
A *- *BC*/D^EFGH  

 



 

Program to convert postfix to prefix expression: 

 
# include <conio.h> 
# include <string.h> 

 
#define MAX 100 
void pop (char *a1); 
void push(char *str); 

char stack[MAX][MAX]; 
int top =-1; 

 

main() 

{ 

char s[MAX], str1[MAX], str2[MAX], str[MAX]; 
char s1[2], temp[2]; 

int i = 0; 

clrscr(); 
printf("Enter the postfix expression; 
"); gets (s); 
while(s[i]!='\0') 
{ 

/*skip whitespace, if any */ 

if (s[i] == ' ') 
i++; 

if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/') 

{ 

 
 
 

 
 

 

} 

else 

{ 

 
 

 
} 
i++; 

} 

pop (str1); pop 
(str2); temp[0] 
= s[i]; temp[1] 

= '\0'; 

strcpy (str, temp); 
strcat(str, str2); 
strcat(str, str1); 
push(str); 

 

 
temp[0] = s[i]; 

temp[1] = '\0'; 
strcpy (s1, 

temp); push (s1); 

printf("\n The prefix expression is: %s", stack[0]); 

} 
 

void pop(char*a1) 
{ 

if(top == -1) 
{ 

 

} 
else 
{ 

 

} 
} 

printf("\nStack is empty"); 
return ; 

 

 
strcpy (a1, 
stack[top]); top--; 



 

void push (char *str) 

{ 
if(top == MAX - 1) 

printf("\nstack is full"); 
else 

{ 

 

} 

} 

 

top++; 
strcpy(stack[top], str); 

 

Conversion from prefix to infix: 

 

Procedure to convert prefix expression to infix expression is as follows: 
 

1. Scan the prefix expression from right to left (reverse order). 

2. If the scanned symbol is an operand, then push it onto the stack. 

3. If the scanned symbol is an operator, pop two symbols from the stack and 

create it as a string by placing the operator in between the operands and 

push it onto the stack. 

 

4. Repeat steps 2 and 3 till the end of the expression. 

 

Example: 

 

Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent 

infix expression. 

 
Symbol Stack Remarks 

 

H Push H 
 

G Push G 
 

F Push F 
 

E Push E 

Pop two operands and place the operator 

^ in between the operands and push the 

string. 

D Push D 

Pop two operands and place the operator 

/ in between the operands and push the 
string. 
Pop two operands and place the operator 

* in between the operands and push the 
string. 

C Push C 
 

B Push B 

Pop two operands and place the 
* operator in front the operands and push 

the string. 
Pop two operands and place the operator 

- 
in front the operands and push the 

H     

 
H G    

 
H G F   

 
H G F E  

 
H G (E^F)  

 

H G (E^F) D  

 

H G (D/(E^F))  

 

H ((D/(E^F))*G)  

 

H ((D/(E^F))*G) C  

 
H ((D/(E^F))*G) C B  

 

H ((D/(E^F))*G) (B*C)  

 

H ((B*C)-((D/(E^F))*G))  

 



 

 
 

* 

A 

+ 

 
End of 

string 

string. 

 

Pop two operands and place the 
operator in front the operands and push 
the string. 

Push A 

Pop two operands and place the 
operator in front the operands and push 
the string. 

The input is now empty. The string formed is infix. 

 

 

 

Program to convert prefix to infix expression: 

 
# include <string.h> 
# define MAX 100 

 
void pop (char*); 
void push(char*); 

char stack[MAX] [MAX]; 
int top = -1; 

 

void main() 

{ 

char s[MAX], str1[MAX], str2[MAX], str[MAX]; 
char s1[2],temp[2]; 

int i=0; 
clrscr( ) ; 
printf("\Enter the prefix expression; "); 
gets(s); 
strrev(s); 

while (s[i]!='\0') 
{ 

/*skip whitespace, if any*/ 
if(s[i] == ' ' ) 

i++; 

if (s[i] == '^' || s[i] == '*'|| s[i] == '-' || s[i] == '+' || s[i] == '/') 
{ 

 

 
 
 

 
 

 
 

 
 

 
} 

else 

{ 

pop(str1); 
pop(str2); 

temp[0] ='('; 
temp[1] ='\0'; 
strcpy(str, temp); 

strcat(str, str1); 
temp[0] = s[i]; 
temp[1] = '\0'; 
strcat(str,temp); 

strcat(str, str2); 
temp[0] =')'; 
temp[1] ='\0'; 
strcat(str,temp); 
push(str); 

 

 
temp[0]=s[i]; 

temp[1]='\0'; 
strcpy(s1, 
temp); push(s1); 

(((B*C)-((D/(E^F))*G))*H) 

(A+(((B*C)-((D/(E^F))*G))*H)) 

(((B*C)-((D/(E^F))*G))*H) A  

 



 

} 

i++; 
} 
printf("\nThe infix expression is: %s", stack[0]); 

} 
 

void pop(char *a1) 

{ 

strcpy(a1,stack[top]); 
top--; 

} 
 

void push (char*str) 
{ 

if(top == MAX - 1) 
printf("\nstack is full"); 

else 

{ 

 

} 

} 

 

top++; 
strcpy(stack[top], str); 

 

 

Conversion from prefix to postfix: 

 

Procedure to convert prefix expression to postfix expression is as follows: 
 

• Scan the prefix expression from right to left (reverse order). 
 

• If the scanned symbol is an operand, then push it onto the stack. 

• If the scanned symbol is an operator, pop two symbols from the stack and 
create it as a string by placing the operator after the operands and push it 
onto the stack. 

 

• Repeat steps 2 and 3 till the end of the expression. 

 

Example: 

 
Convert the following prefix expression + A * - * B C * / D ^ E F G H into its equivalent 
postfix expression. 

 
 

Symbol    Stack Remarks 

H H      Push H 
      

G H G     Push G 
      

F H G F    Push F 
      

E H G F E   Push E 

Pop two operands and place the operator 
^ 

after the operands and push the string. 

D Push D 

H G EF^  

 
H G EF^ D  

 



 

/ 

 
* 

C 

B 

* 

 
- 

 
* 

A 

+ 
 

End of 

string 

Pop two operands and place the operator 

after the operands and push the string. 

Pop two operands and place the operator 

after the operands and push the string. 

Push C 

 
Push B 

Pop two operands and place the operator 

after the operands and push the string. 

Pop two operands and place the operator 

after the operands and push the string. 

Pop two operands and place the operator 

after the operands and push the string. 

Push A 

Pop two operands and place the operator 

after the operands and push the string. 

The input is now empty. The string formed is postfix. 

 

 

 

Program to convert prefix to postfix expression: 

 
# include <stdio.h> 
# include <conio.h> 

# include <string.h> 

 

#define MAX 100 

 
void pop (char *a1); 
void push(char *str); 

char stack[MAX][MAX]; 
int top =-1; 

 

void main() 

{ 

char s[MAX], str1[MAX], str2[MAX], str[MAX]; 
char s1[2], temp[2]; 

int i = 0; 
clrscr(); 
printf("Enter the prefix expression; "); 

gets (s); 

strrev(s); 
while(s[i]!='\0') 
{ 

if (s[i] == ' ') /*skip whitespace, if any */ i++; 
 

if(s[i] == '^' || s[i] == '*' || s[i] == '-' || s[i]== '+' || s[i] == '/') 
{ 

pop (str1); pop 
(str2); temp[0] 
= s[i]; temp[1] 
= '\0'; 

strcat(str1,str2); 
strcat (str1, temp); 
strcpy(str, str1); 
push(str); 

} 

ABC*DEF^/G*-H*+ 

BC*DEF^/G*-H* 

H G DEF^/  

 
H DEF^/G*  

 
H DEF^/G* C  

 
H DEF^/G* C B  

 
H DEF^/G* BC*  

 
H BC*DEF^/G*-  

 

BC*DEF^/G*-H* A  

 



 

else 

{ 

 
 

 
} 
i++; 

} 

 
 

temp[0] = s[i]; 

temp[1] = '\0'; 
strcpy (s1, 
temp); push (s1); 

printf("\nThe postfix expression is: %s", stack[0]); 
} 

void pop(char*a1) 
{ 

if(top == -1) 

{ 

 

} 

else 

{ 

 

} 
} 

printf("\nStack is empty"); 
return ; 

 

 
strcpy (a1, 
stack[top]); top--; 

void push (char *str) 
{ 

if(top == MAX - 1) 
printf("\nstack is full"); 

else 

{ 

 

} 

} 

 

top++; 
strcpy(stack[top], str); 

 

 

4.4. Evaluation of postfix expression: 

 

The postfix expression is evaluated easily by the use of a stack. When a number is seen, 
it is pushed onto the stack; when an operator is seen, the operator is applied to the two 
numbers that are popped from the stack and the result is pushed onto the stack. When 
an expression is given in postfix notation, there is no need to know any precedence rules; 
this is our obvious advantage. 

 

Example 1: 
 

Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + * 

 

SYMBOL 
OPERAND 

1 
OPERAND 2 VALUE STACK REMARKS 

6    6  

5    6, 5  

2    6, 5, 2  

3 
   

6, 5, 2, 3 
The first four symbols are placed on 
the stack. 

 

+ 
 

2 
 

3 
 

5 
 

6, 5, 5 
Next a ‗+‘ is read, so 3 and 2 are 
popped from the stack and their 
sum 5, is pushed 



 

8 2 3 5 6, 5, 5, 8 Next 8 is pushed 

* 5 8 40 6, 5, 40 
Now a ‗*‘ is seen, so 8 and 5 are 
popped as 8 * 5 = 40 is pushed 

+ 5 40 45 6, 45 
Next, a ‗+‘ is seen, so 40 and 5 are 
popped and 40 + 5 = 45 is pushed 

3 5 40 45 6, 45, 3 Now, 3 is pushed 

+ 45 3 48 6, 48 
Next, ‗+‘ pops 3 and 45 and pushes 
45 + 3 = 48 is pushed 

 

* 
 

6 
 

48 
 

288 
 

288 
Finally, a ‗*‘ is seen and 48 and 6 
are popped, the result 6 * 48 = 
288 is pushed 

 

 
Example 2: 

 

Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 ↑ 3 + 

 

SYMBOL OPERAND 1 OPERAND 2 VALUE STACK 

6    6 

2    6, 2 

3    6, 2, 3 

+ 2 3 5 6, 5 

- 6 5 1 1 

3 6 5 1 1, 3 

8 6 5 1 1, 3, 8 

2 6 5 1 1, 3, 8, 2 

/ 8 2 4 1, 3, 4 

+ 3 4 7 1, 7 

* 1 7 7 7 

2 1 7 7 7, 2 

↑ 7 2 49 49 

3 7 2 49 49, 3 

+ 49 3 52 52 

 

Program to evaluate a postfix expression: 

 
2 include <conio.h> 
3 include <math.h> 

4 define MAX 20 

 

int isoperator(char ch) 

{ 
if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '^') 

return 1; 

else 

 

} 

 
return 0; 



 

void main(void) 

{ 
char postfix[MAX]; 

int val; 

char ch; 

int i = 0, top = 0; 

float val_stack[MAX], val1, val2, 
res; clrscr(); 
printf("\n Enter a postfix expression: "); 
scanf("%s", postfix); 
while((ch = postfix[i]) != '\0') 

{ 
if(isoperator(ch) == 1) 

{ 

val2 = val_stack[-- 
top]; val1 = val_stack[- 
-top]; switch(ch) 

{ 

case '+': 

res = val1 + 
val2; break; 

case '-': 

res = val1 - val2; 
break; 

case '*': 

res = val1 * val2; 
break; 

case '/': 

res = val1 / val2; 
break; 

case '^': 

res = pow(val1, val2); 
break; 

} 

 
} 
else 

 
top++; 
i++; 

} 

val_stack[top] = res; 

 

val_stack[top] = ch-48; /*convert character digit to integer digit */ 

printf("\n Values of %s is : %f ",postfix, val_stack[0] ); 
getch(); 

} 

 

 

Applications of stacks: 

 

1. Stack is used by compilers to check for balancing of parentheses, brackets 

and braces. 

 

2. Stack is used to evaluate a postfix expression. 

 

3. Stack is used to convert an infix expression into postfix/prefix form. 

 

4. In recursion, all intermediate arguments and return values are stored on the 

processor‘s stack. 

 
5. During a function call the return address and arguments are pushed onto a 

stack and on return they are popped off. 



 

Queue: 

 

A queue is another special kind of list, where items are inserted at one end called the 

rear and deleted at the other end called the front. Another name for a queue is a 
―FIFO‖ or ―First-in-first-out‖ list. 

 

The operations for a queue are analogues to those for a stack, the difference is that the 

insertions go at the end of the list, rather than the beginning. We shall use the following 

operations on queues: 

 

• enqueue: which inserts an element at the end of the queue. 

• dequeue: which deletes an element at the start of the queue. 

 

 
Representation of Queue: 

 

Let us consider a queue, which can hold maximum of five elements. Initially the queue 

is empty. 
 

0 1 2 3 4 

     

 

 

F R 

 

Que u e E mpt y 
F RO NT = REA R = 0 

 

Now, insert 11 to the queue. Then queue status will be: 
 

0 1 2 3 4 

11 
    

 

  

F R 

 

REA R = REA R + 1 = 1 
F RO NT = 0 

 
 

Next, insert 22 to the queue. Then the queue status is: 
 

0 1 2 3 4 

11 22 
   

 

  
F R 

 

REA R = REA R + 1 = 2 
F RO NT = 0 

 
 

Again insert another element 33 to the queue. The status of the queue is: 
 

0 1 2 3 4 

11 22 33 
  

 

  

F R 

 

REA R = REA R + 1 = 3 
F RO NT = 0 



 

Now, delete an element. The element deleted is the element at the front of the queue. 

So the status of the queue is: 
 

0 1 2 3 4 

REA R = 3 
F RO NT = F R O NT + 1 = 1 

 

F R 
 

Again, delete an element. The element to be deleted is always pointed to by the FRONT 

pointer. So, 22 is deleted. The queue status is as follows: 
 

0 1 2 3 4 

  
33 

  

 

  

F R 

 

REA R = 3 
F RO NT = F R O NT + 1 = 2 

 

Now, insert new elements 44 and 55 into the queue. The queue status is: 
 

0 1 2 3 4 

  
33 44 55 

 

  
F R 

 

REA R = 5 
F RO NT = 2 

 

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as 

the rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. 

The queue status is as follows: 
 

0 1 2 3 4 

REA R = 5 
F RO NT = 2 

F R 
 

Now it is not possible to insert an element 66 even though there are two vacant positions 

in the linear queue. To over come this problem the elements of the queue are to be 

shifted towards the beginning of the queue so that it creates vacant position at the rear 

end. Then the FRONT and REAR are to be adjusted properly. The element 66 can be 

inserted at the rear end. After this operation, the queue status is as follows: 
 

0 1 2 3 4 
 

33 44 55 66 
 

 

  
F R 

 

REA R = 4 
F RO NT = 0 

 

This difficulty can overcome if we treat queue position with index 0 as a position that 

comes after position with index 4 i.e., we treat the queue as a circular queue. 

 
22 33 

  

 

  
33 44 55 

 



 

Source code for Queue operations using array: 

 

In order to create a queue we require a one dimensional array Q(1:n) and two  variables 

front and rear. The conventions we shall adopt for these two variables are that front is 

always 1 less than the actual front of the queue and rear always points to the last element 

in the queue. Thus, front = rear if and only if there are no elements in the queue. The 

initial condition then is front = rear = 0. The various queue operations to perform 

creation, deletion and display the elements in a queue are as follows: 

 

insertQ(): inserts an element at the end of queue Q. 

deleteQ(): deletes the first element of Q. 

displayQ(): displays the elements in the queue. 

 
8. include <conio.h> 

9. define MAX 6 

int Q[MAX]; 
int front, rear; 

 
void insertQ() 

{ 
int data; 
if(rear == MAX) 

{ 

 

} 
else 

{ 

 

 
 

 
} 

} 

printf("\n Linear Queue is full"); 
return; 

 

 
printf("\n Enter data: "); 

scanf("%d", &data); 
Q[rear] = data; rear++; 

 

printf("\n Data Inserted in the Queue "); 

void deleteQ() 
{ 

if(rear == front) 
{ 

 

} 

else 

{ 

 

} 

} 

printf("\n\n Queue is Empty.."); 
return; 

 

 
printf("\n Deleted element from Queue is %d", 
Q[front]); front++; 

void displayQ() 
{ 

int i; 
if(front == rear) 

{ 

 

} 
else 
{ 

printf("\n\n\t Queue is Empty"); 
return; 

 

 
printf("\n Elements in Queue are: 
"); for(i = front; i < rear; i++) 



 

{ 

printf("%d\t", Q[i]); 
} 

} 

} 
int menu() 

{ 
int ch; 
clrscr(); 

printf("\n \tQueue operations using ARRAY.."); 
printf("\n -----------********** ------------ \n"); 
printf("\n 1. Insert "); 

printf("\n 2. Delete "); 
printf("\n 3. Display"); 
printf("\n 4. Quit "); 
printf("\n Enter your choice: 
"); scanf("%d", &ch); 

return ch; 
} 
void main() 

{ 

int ch; 
do 
{ 

 

 
ch = menu(); 
switch(ch) 
{ 

 
 
 

 
 

 
 
 

 
} 
getch(); 

} while(1); 

} 

case 1: 

 

case 2: 

 

case 3: 

 

case 4: 

 
insertQ(); 

break; 
 

deleteQ(); 

break; 

 

displayQ(); 
break; 

 
return; 

 
 

Linked List Implementation of Queue: 

 
We can represent a queue as a linked list. In a queue data is deleted from the front end 

and inserted at the rear end. We can perform similar operations on the two ends of a list. 
We use two pointers front and rear for our linked queue implementation. 

 

The linked queue looks as shown in figure 4.4: 

 

Figure 4.4. Linked Queue representation 
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}  

Source code for queue operations using linked list: 

 

include <stdlib.h> 

include <conio.h> 

 
struct queue 

{ 

int data; 

struct queue *next; 

}; 

typedef struct queue 

node; node *front = NULL; 

node *rear = NULL; 
 

node* getnode() 

{ 

node *temp; 

temp = (node *) malloc(sizeof(node)) ; 

printf("\n Enter data "); 

scanf("%d", &temp -> data); 

temp -> next = NULL; return 

temp; 
} 

void insertQ() 

{ 

node *newnode; 

newnode = getnode(); 

if(newnode == NULL) 
{ 

printf("\n Queue Full"); 

return; 
} 
if(front == NULL) 

{ 

 

} 
else 

{ 

 

} 

front = newnode; 

rear = newnode; 

 

 

rear -> next = newnode; 

rear = newnode; 

printf("\n\n\t Data Inserted into the Queue.."); 

} 

void deleteQ() 

{ 

node *temp; 
if(front == NULL) 
{ 

printf("\n\n\t Empty Queue.."); 

return; 
} 

temp = front; 

front = front -> next; 

printf("\n\n\t Deleted element from queue is %d ", temp -> 



} 

 

data); free(temp); 



}  

void displayQ() 

{ 

node *temp; 

if(front == NULL) 
{ 

 

} 
else 

{ 

printf("\n\n\t\t Empty Queue "); 

 
 

temp = front; 

printf("\n\n\n\t\t Elements in the Queue are: "); 
while(temp != NULL ) 
{ 

printf("%5d ", temp -> data); 

temp = temp -> next; 
} 

} 

} 
 

char menu() 

{ 

char ch; 

clrscr(); 

printf("\n \t..Queue operations using pointers.. "); 

printf("\n\t -----------**********------------- 

\n"); printf("\n 1. Insert "); 

printf("\n 2. Delete "); 

printf("\n 3. Display"); 

printf("\n 4. Quit "); 

printf("\n Enter your choice: "); 

ch = getche(); 
return ch; 

} 
 

void main() 

{ 

char ch; 

do 
{ 

ch = menu(); 

switch(ch) 
{ 

case '1' : 

insertQ(); 

break; 
case '2' : 

deleteQ(); 

break; 
case '3' : 

displayQ(); 
break; 

case '4': 

return; 

} 
getch(); 

} while(ch != '4'); 



 

Applications of Queue: 

 

1. It is used to schedule the jobs to be processed by the CPU. 

 

2. When multiple users send print jobs to a printer, each printing job is kept in 

the printing queue. Then the printer prints those jobs according to first in first 

out (FIFO) basis. 
 

3. Breadth first search uses a queue data structure to find an element from a 

graph. 

 

Circular Queue: 

 

A more efficient queue representation is obtained by regarding the array Q[MAX] as 

circular. Any number of items could be placed on the queue. This implementation of a 

queue is called a circular queue because it uses its storage array as if it were a circle 

instead of a linear list. 

 

There are two problems associated with linear queue. They are: 

 
• Time consuming: linear time to be spent in shifting the elements to the 

beginning of the queue. 

 

• Signaling queue full: even if the queue is having vacant position. 
 

For example, let us consider a linear queue status as follows: 
 

0 1 2 3 4 

  
33 44 55 

 

  
F R 

 

REA R = 5 
F RO NT = 2 

 

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as 
the rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. 
The queue status is as follows: 

 

0 1 2 3 4 

  
33 44 55 

 

  
F R 

 

REA R = 5 
F RO NT = 2 

 

This difficulty can be overcome if we treat queue position with index zero as a position 

that comes after position with index four then we treat the queue as a circular queue. 

 

In circular queue if we reach the end for inserting elements to it, it is possible to insert 

new elements if the slots at the beginning of the circular queue are empty. 



 

 0 

3 2 

 0 

11 

1 

3 2 

Representation of Circular Queue: 

 

Let us consider a circular queue, which can hold maximum (MAX) of six elements. 

Initially the queue is empty. 

 
F R 

 

 

 

 
1 Que u e E mpt y 

4 M A X = 6 

F RO NT = REA R = 0 
CO U NT = 0 

 

 
 

Circ ular Que ue 

 
 

Now, insert 11 to the circular queue. Then circular queue status will be: 

 
F 

 
 

R 

 
F RO NT  = 0 

4 REA R = ( REA R + 1) % 6 = 1 

CO U NT  = 1 

 

 

 

 
Circ ular Que ue 

 
 

Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue 

status is: 

 

 

 

 

 
 

1 FRONT = 0 
REAR = (REAR + 1) % 6 = 5 
COUNT = 5 

 

 

 
Circular Queue 

F 

R 

5 
0 

11 

55 
22 

44 33 

3 
2 

4 



 

R 

0 
5 

55 
22 1 

44 33 

3 2 

5 
0 

66 

55 
1 

44 33 

3 2 

Now, delete an element. The element deleted is the element at the front of the circular 

queue. So, 11 is deleted. The circular queue status is as follows: 

 

 

 
F 

 

F RO NT = (F R O NT + 1) % 6 = 1 
4 REA R = 5 

CO U NT = CO U NT - 1 = 4 

 

 

 

 
Circ ular Que ue 

 

 
 

Again, delete an element. The element to be deleted is always pointed to by the FRONT 

pointer. So, 22 is deleted. The circular queue status is as follows: 

 

 

 

 

 
 

F RO NT = (F R O NT + 1) % 6 = 2 
REA R = 5 
CO U NT = CO U NT - 1 = 3 

 

F 

 

Circ ular Que ue 

 

 
 

Again, insert another element 66 to the circular queue. The status of the circular queue 

is: 

R 

 

 

 

 

 

4 F RO NT = 2 

REA R = ( REA R + 1) % 6 = 0 
CO U NT = CO U NT + 1 = 4 

 

F 
 

Circ ular Que ue 

R 

0 
5 

 55 
1 

44 33 

3 2 



 

Now, insert new elements 77 and 88 into the circular queue. The circular queue status 

is: 
 

 
5 

66 

 
 

4 55 

0 

 
77 

 
88 1 

F RO NT = 2, REA R = 2 
REA R = REA R % 6 = 2 
CO U NT = 6 

44 33 

3 2 
F 

R 

Circ ular Que ue 

 
Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add the 

element to circular queue. So, the circular queue is full. 

 

Source code for Circular Queue operations, using array: 

 
# include <stdio.h> 
# include <conio.h> 
# define MAX 6 

 
int CQ[MAX]; 

int front = 0; 
int rear = 0; 
int count = 0; 

 
void insertCQ() 

{ 
int data; 

if(count == MAX) 
{ 

 
} 

else 

{ 

 
 

 
 
 

} 

} 

printf("\n Circular Queue is Full"); 

 

 
printf("\n Enter data: "); 

scanf("%d", &data); 
CQ[rear] = data; 

rear = (rear + 1) % MAX; 
count ++; 
printf("\n Data Inserted in the Circular Queue "); 

 

void deleteCQ() 
{ 

if(count == 0) 
{ 

 
} 
else 

{ 

 

 
} 

} 

printf("\n\nCircular Queue is Empty.."); 

 

 
printf("\n Deleted element from Circular Queue is %d ", CQ[front]); 
front = (front + 1) % MAX; 

count --; 



 

void displayCQ() 

{ 

int i, j; 
if(count == 0) 
{ 

 
} 
else 

{ 

printf("\n\n\t Circular Queue is Empty "); 

 

 
printf("\n Elements in Circular Queue are: "); 
j = count; 
for(i = front; j != 0; j--) 

{ 
printf("%d\t", CQ[i]); 

i = (i + 1) % MAX; 

} 

} 

} 
 

int menu() 

{ 

int ch; 
clrscr(); 
printf("\n \t Circular Queue Operations using ARRAY.."); 

printf("\n -----------********** ------------ \n"); 
printf("\n 1. Insert "); 
printf("\n 2. Delete "); 
printf("\n 3. Display"); 
printf("\n 4. Quit "); 
printf("\n Enter Your Choice: 
"); scanf("%d", &ch); 
return ch; 

} 
 

void main() 

{ 

int ch; 
do 
{ 

 

 
ch = menu(); 
switch(ch) 
{ 

 

 
 
 

 
 

 
 
 

 

} 
getch(); 

} while(1); 

} 

case 1: 

 

case 2: 

 

case 3: 

 

case 4: 

default: 

 
insertCQ(); 
break; 

 
deleteCQ(); 
break; 

 
displayCQ(); 
break; 

 

return; 

 

printf("\n Invalid Choice "); 



 

Deletion  

Insertion Deletion 

front rear 

Deque: 

 

In the preceding section we saw that a queue in which we insert items at one end and 

from which we remove items at the other end. In this section we examine an extension 

of the queue, which provides a means to insert and remove items at both ends of the 

queue. This data structure is a deque. The word deque is an acronym derived from 

double-ended queue. Figure 4.5 shows the representation of a deque. 

 
 

36 16 56 62 19 

 

 

 

Figure 4.5. Representation of a deque. 

 
A deque provides four operations. Figure 4.6 shows the basic operations on a deque. 

 

• enqueue_front: insert an element at front. 

• dequeue_front: delete an element at front. 

• enqueue_rear: insert element at rear. 

• dequeue_rear: delete element at rear. 

 

Figure 4.6. Basic operations on deque 

 
 

There are two variations of deque. They are: 

 

• Input restricted deque (IRD) 

• Output restricted deque (ORD) 

 
An Input restricted deque is a deque, which allows insertions at one end but allows 
deletions at both ends of the list. 

 

An output restricted deque is a deque, which allows deletions at one end but 

allows insertions at both ends of the list. 

11 22 enqueue_front(33) 33 11 22 enqueue_rear(44) 33 11 22 44 

dequeue_front(33) 

55 11 22 enqueue_front(55) 11 22 dequeue_rear(44) 11 22 44 



 

Priority Queue: 

 

A priority queue is a collection of elements such that each element has been assigned a 

priority and such that the order in which elements are deleted and processed comes from 

the following rules: 

 

1. An element of higher priority is processed before any element of lower 

priority. 

2. two elements with same priority are processed according to the order in 
which they were added to the queue. 

 
A prototype of a priority queue is time sharing system: programs of high priority are 
processed first, and programs with the same priority form a standard queue. An efficient 
implementation for the Priority Queue is to use heap, which in turn can be used for sorting 
purpose called heap sort. 

 

Exercises 
 

1. What is a linear data structure? Give two examples of linear data structures. 

 

2. Is it possible to have two designs for the same data structure that provide the 

same functionality but are implemented differently? 

 

3. What is the difference between the logical representation of a data structure and 

the physical representation? 
 

4. Transform the following infix expressions to reverse polish notation: 

a) A ↑ B * C – D + E / F / (G + H) 

b) ((A + B) * C – (D – E)) ↑ (F + G) 

c) A – B / (C * D ↑ E) 

d) (a + b ↑ c ↑ d) * (e + f / d)) 

f) 3 – 6 * 7 + 2 / 4 * 5 – 8 
g) (A – B) / ((D + E) * F) 

h) ((A + B) / D) ↑ ((E – F) * G) 

 

5. Evaluate the following postfix expressions: 

a) P1: 5, 3, +, 2, *, 6, 9, 7, -, /, - 

b) P2: 3, 5, +, 6, 4, -, *, 4, 1, -, 2, ↑, + 

c) P3 : 3, 1, +, 2, ↑, 7, 4, -, 2, *, +, 5, - 

6. Consider the usual algorithm to convert an infix expression to a postfix expression. 

Suppose that you have read 10 input characters during a conversion and that the 

stack now contains these symbols: 

 

 
 

bottom 

Now, suppose that you read and process the 11th symbol of the input. Draw the 

stack for the case where the 11
th 

symbol is: 
A. A number: 

B. A left parenthesis: 

C. A right parenthesis: 
D. A minus sign: 

E. A division sign: 

+ 
( 

* 



 

7. Write a program using stack for parenthesis matching. Explain what modifications 

would be needed to make the parenthesis matching algorithm check expressions 

with different kinds of parentheses such as (), [] and {}'s. 

 

8. Evaluate the following prefix expressions: 

a) + * 2 + / 14 2 5 1 
b) - * 6 3 – 4 1 

c) + + 2 6 + - 13 2 4 

 

9. Convert the following infix expressions to prefix notation: 

a) ((A + 2) * (B + 4)) -1 
b) Z – ((((X + 1) * 2) – 5) / Y) 

c) ((C * 2) + 1) / (A + B) 

d) ((A + B) * C – (D - E)) ↑ (F + G) 

e) A – B / (C * D ↑ E) 

 

10. Write a ―C‖ function to copy one stack to another assuming 

a) The stack is implemented using array. 

b) The stack is implemented using linked list. 

 
11. Write an algorithm to construct a fully parenthesized infix expression from its postfix 

equivalent. Write a ―C‖ function for your algorithm. 

 

12. How can one convert a postfix expression to its prefix equivalent and vice-versa? 

 
13. A double-ended queue (deque) is a linear list where additions and deletions can be 

performed at either end. Represent a deque using an array to store the elements of 
the list and write the ―C‖ functions for additions and deletions. 

 

14. In a circular queue represented by an array, how can one specify the number of 

elements in the queue in terms of ―front‖, ―rear‖ and MAX-QUEUE-SIZE? Write a 
―C‖ function to delete the K-th element from the ―front‖ of a circular queue. 

 

15. Can a queue be represented by a circular linked list with only one pointer pointing 

to the tail of the queue? Write ―C‖ functions for the ―add‖ and ―delete‖ operations on 

such a queue 

 

16. Write a ―C‖ function to test whether a string of opening and closing parenthesis is 

well formed or not. 

 

17. Represent N queues in a single one-dimensional array. Write functions for ―add‖ 

and ―delete‖ operations on the i
th 

queue 

18. Represent a stack and queue in a single one-dimensional array. Write functions for  

―push‖,  ―pop‖  operations  on  the  stack  and  ―add‖,  ―delete‖  functions  on  the queue. 
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Multiple Choice Questions 

 

1. Which among the following is a linear data structure: [ D ] 

A. Queue 

B. Stack 

C. Linked List 

D. all the above 

2. Which among the following is a Dynamic data structure: [ A ] 

A. Double Linked List C. Stack 
B. Queue D. all the above 

3. Stack is referred as: [ A ] 

A. Last in first out list C. both A and B 

B. First in first out list D. none of the above 

4. A stack is a data structure in which all insertions and deletions of entries [ A ] 
are made at: 

A. One end C. Both the ends 

B. In the middle D. At any position 

5. A queue is a data structure in which all insertions and deletions are made [ A ] 

respectively at: 
A. rear and front C. front and rear 

B. front and front D. rear and rear 

 
6. Transform the following infix expression to postfix form: [ D ] 

(A + B) * (C – D) / E 

A. A B * C + D / - C. A B + C D * - / E 

B. A B C * C D / - + D. A B + C D - * E / 

7. Transform the following infix expression to postfix form: [ B ] 

A - B / (C * D) 
A. A B * C D - / C. / - D C * B A 

B. A B C D * / - D. - / * A B C D 

8. Evaluate the following prefix expression: * - + 4 3 5 / + 2 4 3 [ A ] 

 
A. 4 C. 1 

B. 8 D. none of the above 

9. Evaluate the following postfix expression: 1 4 18 6 / 3 + + 5 / + [ C ] 

A. 8 C. 3 

B. 2 D. none of the above 

10. Transform the following infix expression to prefix form: [ B ] 

((C * 2) + 1) / (A + B) 
A. A B + 1 2 C * + / C. / * + 1 2 C A B + 

B. / + * C 2 1 + A B D. none of the above 

11. Transform the following infix expression to prefix form: [ D ] 
Z – ((((X + 1) * 2) – 5) / Y) 

A. / - * + X 1 2 5 Y C. / * - + X 1 2 5 Y 

B. Y 5 2 1 X + * - / D. none of the above 

12. Queue is also known as: [ B ] 
A. Last in first out list C. both A and B 

B. First in first out list D. none of the above 
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13. One difference between a queue and a stack is: [ C ] 
A. Queues require dynamic memory, but stacks do not. 

B. Stacks require dynamic memory, but queues do not. 

C. Queues use two ends of the structure; stacks use only one. 

D. Stacks use two ends of the structure, queues use only one. 

 

14. If the characters 'D', 'C', 'B', 'A' are placed in a queue (in that order), and [ D ] 

then removed one at a time, in what order will they be removed? 
A. ABCD C. DCAB 

B. ABDC D. DCBA 

 

15. Suppose we have a circular array implementation of the queue class, [ D ] 

with ten items in the queue stored at data[2] through data[11]. The 

CAPACITY is 42. Where does the push member function place the new 

entry in the array? 
A. data[1] C. data[11] 

B. data[2] D. data[12] 

 

16. Consider the implementation of the queue using a circular array. What [ B ] 

goes wrong if we try to keep all the items at the front of a partially-filled 
array (so that data[0] is always the front). 

A. The constructor would require linear time. 
B. The get_front function would require linear time. 

C. The insert function would require linear time. 

D. The is_empty function would require linear time. 
 

17. In the linked list implementation of the queue class, where does the push [ A ] 

member function place the new entry on the linked list? 
A. At the head 

B. At the tail 

C. After all other entries that are greater than the new entry. 

D. After all other entries that are smaller than the new entry. 

 

18. In the circular array version of the queue class (with a fixed-sized array), [ ] 

which operations require linear time for their worst-case behavior? 

A. front C. empty 

B. push D. None of these. 
 

19. In the linked-list version of the queue class, which operations require [ ] 

linear time for their worst-case behavior? 
A. front C. empty 

B. push D. None of these operations. 

 

20. To implement the queue with a linked list, keeping track of a front [ B ] 

pointer and a rear pointer. Which of these pointers will change during an 
insertion into a NONEMPTY queue? 

A. Neither changes C. Only rear_ptr changes. 

B. Only front_ptr changes. D. Both change. 

 

21. To implement the queue with a linked list, keeping track of a front [ D ] 

pointer and a rear pointer. Which of these pointers will change during an 
insertion into an EMPTY queue? 

A. Neither changes C. Only rear_ptr changes. 

B. Only front_ptr changes. D. Both change. 
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22. Suppose top is called on a priority queue that has exactly two entries [ B ] 

with equal priority. How is the return value of top selected? 
A. The implementation gets to choose either one. 

B. The one which was inserted first. 

C. The one which was inserted most recently. 

D. This can never happen (violates the precondition) 
 

23. Entries in a stack are "ordered". What is the meaning of this statement? [ D ] 

A. A collection of stacks can be sorted. 

B. Stack entries may be compared with the '<' operation. 
C. The entries must be stored in a linked list. 

D. There is a first entry, a second entry, and so on. 

 

24. The operation for adding an entry to a stack is traditionally called: [ D ] 
A. add C. insert 
B. append D. push 

 

25. The operation for removing an entry from a stack is traditionally called: [ C ] 
A. delete C. pop 

B. peek D. remove 

26. Which of the following stack operations could result in stack underflow? [ A ] 

A. is_empty C. push 
B. pop D. Two or more of the above answers 

 

27. Which of the following applications may use a stack? [ D ] 

A. A parentheses balancing program. 
B. Keeping track of local variables at run time. 

C. Syntax analyzer for a compiler. 

D. All of the above. 
 

28. Here is an infix expression: 4 + 3 * (6 * 3 - 12). Suppose that we are [ D ] 
using the usual stack algorithm to convert the expression from infix to 

postfix notation. What is the maximum number of symbols that will 

appear on the stack AT ONE TIME during the conversion of this 

expression? 
A. 1 C. 3 

B. 2 D. 4 

 

29. What is the value of the postfix expression 6 3 2 4 + - * [ A ] 

A. Something between -15 and -100 

B. Something between -5 and -15 

C. Something between 5 and -5 

D. Something between 5 and 15 

E. Something between 15 and 100 

 

30. If the expression ((2 + 3) * 4 + 5 * (6 + 7) * 8) + 9 is evaluated with * [ A ] 

having precedence over +, then the value obtained is same as the value 
of which of the following prefix expressions? 

A. + + * + 2 3 4 * * 5 + 6 7 8 9 C. * + + + 2 3 4 * * 5 + 6 7 8 9 

B. + * + + 2 3 4 * * 5 + 6 7 8 9 D. + * + + 2 3 4 + + 5 * 6 7 8 9 

 

31. Evaluate the following prefix expression: [ B ] 
+ * 2 + / 14 2 5 1 

A. 50 C. 40 

B. 25 D. 15 



 

32 Parenthesis are never needed prefix or postfix expression: [ A ] 
A. True C. Cannot be expected 

B. False D. None of the above 

 

33 A postfix expression is merely the reverse of the prefix expression: [ B ] 
A. True C. Cannot be expected 

B. False D. None of the above 

 

34 Which among the following data structure may give overflow error, even [ A ] 

though the current number of elements in it, is less than its size: 
A. Simple Queue C. Stack 

B. Circular Queue D. None of the above 

 
35. Which among the following types of expressions does not require 

precedence rules for evaluation: 

[ C ] 

 A. Fully parenthesized infix expression 

B. Prefix expression 

C. both A and B 
D. none of the above 

  

 

36. Conversion of infix arithmetic expression to postfix expression uses: [ D ] 

A. Stack C. linked list 

B. circular queue D. Queue 
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Hybrid structures: 

 

If two basic types of structures are mixed then it is a hybrid form. Then one part contiguous and 

another part non-contiguous. For example, figure 1.5 shows how to implement a double– linked 

list using three parallel arrays, possibly stored a past from each other in memory. 

 

 

 

 

 

 
 

 

Figure 1.5. A double linked list via a hybrid data structure 

 
The array D contains the data for the list, whereas the array P and N hold the previous and next  

―pointers‘‘.  The  pointers  are  actually  nothing  more  than  indexes  into  the  D  array.  For instance, 

D[i] holds the data for node i and p[i] holds the index to the node previous to i, where may or 

may not reside at position i–1. Like wise, N[i] holds the index to the next node in the list. 

 

1.6. Abstract Data Type (ADT): 

 

The design of a data structure involves more than just its organization. You also need to plan for 

the way the data will be accessed and processed – that is, how the data will be interpreted 

actually, non-contiguous structures – including lists, tree and graphs – can be implemented either 

contiguously or non- contiguously like wise, the structures that are normally treated as 

contiguously - arrays and structures – can also be implemented non-contiguously. 

 

The notion of a data structure in the abstract needs to be treated differently from what ever is 

used to implement the structure. The abstract notion of a data structure is defined in terms of 

the operations we plan to perform on the data. 

 

Considering both the organization of data and the expected operations on the data, leads to the 

notion of an abstract data type. An abstract data type in a theoretical construct that consists of 

data as well as the operations to be performed on the data while hiding implementation. 

 

For example, a stack is a typical abstract data type. Items stored in a stack can only be added 

and removed in certain order – the last item added is the first item removed. We call these 

operations, pushing and popping. In this definition, we haven‘t specified have items are stored 

on the stack, or how the items are pushed and popped. We have only specified the valid 

operations that can be performed. 

 

For example, if we want to read a file, we wrote the code to read the physical file device. That 
is, we may have to write the same code over and over again. So we created what is known 
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today as an ADT. We wrote the code to read a file and placed it in a library for a programmer to 
use. 

 

As another example, the code to read from a keyboard is an ADT. It has a data structure, 

character and set of operations that can be used to read that data structure. 

 

To be made useful, an abstract data type (such as stack) has to be implemented and this is where 

data structure comes into ply. For instance, we might choose the simple data structure of an 

array to represent the stack, and then define the appropriate indexing operations to perform 

pushing and popping. 

 

1.9. Selecting a data structure to match the operation: 

 

The most important process in designing a problem involves choosing which data structure to 

use. The choice depends greatly on the type of operations you wish to perform. 

 

Suppose we have an application that uses a sequence of objects, where one of the main 

operations is delete an object from the middle of the sequence. The code for this is as follows: 

 

void delete (int *seg, int &n, int posn) 

// delete the item at position from an array of n elements. 

{ 

if (n) 

{ 

int i=posn; 

n--; 

while (i < n) 
{ 

 

} 
} 

return; 

} 

seq[i] = 

seg[i+1]; i++; 

 

This function shifts towards the front all elements that follow the element at position posn. This 

shifting involves data movement that, for integer elements, which is too costly. However, suppose 

the array stores larger objects, and lots of them. In this case, the overhead for moving data 

becomes high. The problem is that, in a contiguous structure, such as an array the logical ordering 

(the ordering that we wish to interpret our elements to have) is the same as the physical ordering 

(the ordering that the elements actually have in memory). 

 

If we choose non-contiguous representation, however we can separate the logical ordering from 

the physical ordering and thus change one without affecting the other. For example, if we store 

our collection of elements using a double–linked list (with previous and next pointers), we can 

do the deletion without moving the elements, instead, we just modify the pointers in each node. 

The code using double linked list is as follows: 

 
void delete (node * beg, int posn) 

//delete the item at posn from a list of elements. 

{ 

int i = posn; 

node *q = beg; 

while (i && q) 
{ 



 

i--; 

q = q next; 

} 
 

if (q) 
{ /* not at end of list, so detach P by making previous and 

next nodes point to each other 

*/ node *p = q -> prev; 

node *n = q -> 
next; if (p) 

p -> next = n; 

 

} 
return; 

} 

if (n)  

n -> prev = P; 

 

The process of detecting a node from a list is independent of the type of data stored in the 

node, and can be accomplished with some pointer manipulation as illustrated in figure below: 
 

Figure 1.6 Detaching a node from a list 
 

Since very little data is moved during this process, the deletion using linked lists will often be 
faster than when arrays are used. 

 

It may seem that linked lists are superior to arrays. But is that always true? There are trade offs. 

Our linked lists yield faster deletions, but they take up more space because they require two 

extra pointers per element. 

 

1.6. Algorithm 

 

An algorithm is a finite sequence of instructions, each of which has a clear meaning and can be 

performed with a finite amount of effort in a finite length of time. No matter what the input values 

may be, an algorithm terminates after executing a finite number of instructions. In addition every 

algorithm must satisfy the following criteria: 

 

Input: there are zero or more quantities, which are externally supplied; 
 

Output: at least one quantity is produced; 
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Definiteness: each instruction must be clear and unambiguous; 

 

Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will 
terminate after a finite number of steps; 

 

Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out 

by a person using only pencil and paper. It is not enough that each operation be definite, but it 

must also be feasible. 

 

In formal computer science, one distinguishes between an algorithm, and a program. A program 

does not necessarily satisfy the fourth condition. One important example of such a program for 

a computer is its operating system, which never terminates (except for system crashes) but 

continues in a wait loop until more jobs are entered. 

 

We represent an algorithm using pseudo language that is a combination of the constructs of a 

programming language together with informal English statements. 

 

1.8. Practical Algorithm design issues: 

 

Choosing an efficient algorithm or data structure is just one part of the design process. Next, will 
look at some design issues that are broader in scope. There are three basic design goals that we 
should strive for in a program: 

 
2. Try to save time (Time complexity). 

3. Try to save space (Space complexity). 

4. Try to have face. 

 

A program that runs faster is a better program, so saving time is an obvious goal. Like wise, a 

program that saves space over a competing program is considered desirable. We want to ―save 

face‖ by preventing the program from locking up or generating reams of garbled data. 

 

1.8. Performance of a program: 

 

The performance of a program is the amount of computer memory and time needed to run a 
program. We use two approaches to determine the performance of a program. One is analytical, 
and the other experimental. In performance analysis we use analytical methods, while in 
performance measurement we conduct experiments. 

 
 

Time Complexity: 

 

The time needed by an algorithm expressed as a function of the size of a problem is called the 

TIME COMPLEXITY of the algorithm. The time complexity of a program is the amount of 

computer time it needs to run to completion. 

 

The limiting behavior of the complexity as size increases is called the asymptotic time complexity. 

It is the asymptotic complexity of an algorithm, which ultimately determines the size of problems 

that can be solved by the algorithm. 

 

Space Complexity: 

 

The space complexity of a program is the amount of memory it needs to run to completion. The 

space need by a program has the following components: 



 

 



 

Instruction space: Instruction space is the space needed to store the compiled version of the 
program instructions. 

 

Data space: Data space is the space needed to store all constant and variable values. Data 

space has two components: 

 
• Space needed by constants and simple variables in program. 

• Space needed by dynamically allocated objects such as arrays and class instances. 

 

Environment stack space: The environment stack is used to save information needed to 

resume execution of partially completed functions. 

 

Instruction Space: The amount of instructions space that is needed depends on factors such 
as: 

• The compiler used to complete the program into machine code. 

• The compiler options in effect at the time of compilation 

• The target computer. 

 

1.8. Classification of Algorithms 

 

If ‗n‘ is the number of data items to be processed or degree of polynomial or the size of the file 
to be sorted or searched or the number of nodes in a graph etc. 

 
 

1 Next instructions of most programs are executed once or at most only a few times. 
If all the instructions of a program have this property, we say that its running time 

is a constant. 

 
Log n When the running time of a program is logarithmic, the program gets slightly slower as n 

grows. This running time commonly occurs in programs that solve a big problem by 
transforming it into a smaller problem, cutting the size by some constant fraction., 
When n is a million, log n is a doubled whenever n doubles, log n increases by a 

constant, but log n does not double until n increases to n
2
. 

n When the running time of a program is linear, it is generally the case that a small 
amount of processing is done on each input element. This is the optimal situation for 
an algorithm that must process n inputs. 

 

n. log n This running time arises for algorithms but solve a problem by breaking it up into 

smaller sub-problems, solving them independently, and then combining the 

solutions. When n doubles, the running time more than doubles. 

n
2 

When the running time of an algorithm is quadratic, it is practical for use only on 

relatively small problems. Quadratic running times typically arise in algorithms that 

process all pairs of data items (perhaps in a double nested loop) whenever n 

doubles, the running time increases four fold. 
 

n3 Similarly, an algorithm that process triples of data items (perhaps in a triple– 

nested loop) has a cubic running time and is practical for use only on small 
problems. Whenever n doubles, the running time increases eight fold. 

2
n 

Few algorithms with exponential running time are likely to be appropriate for 
practical  use,  such  algorithms  arise  naturally  as  ―brute–force‖  solutions  to 

problems. Whenever n doubles, the running time squares. 



 

1.11. Complexity of Algorithms 

 

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage 
space requirement of the algorithm in terms of the size ‗n‘ of the input data. Mostly, the storage 
space required by an algorithm is simply a multiple of the data size ‗n‘. Complexity shall refer to 
the running time of the algorithm. 

 

The function f(n), gives the running time of an algorithm, depends not only on the size ‗n‘ of the 

input data but also on the particular data. The complexity function f(n) for certain cases are: 

 
1. Best Case : The minimum possible value of f(n) is called the best case. 

2. Average Case : The expected value of f(n). 

3. Worst Case : The maximum value of f(n) for any key possible input. 

 
The field of computer science, which studies efficiency of algorithms, is known as analysis of 

algorithms. 

 

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in the rate 

of growth of the time or space required to solve larger and larger instances of a problem. We 

will associate with the problem an integer, called the size of the problem, which is a measure of 

the quantity of input data. 

 

1.10. Rate of Growth 
 

Big–Oh (O), Big–Omega (Ω), Big–Theta (Θ) and Little–Oh 

 

2. T(n) = O(f(n)), (pronounced order of or big oh), says that the growth rate of T(n) is 

less than or equal (<) that of f(n) 

 
3. T(n) = Ω(g(n)) (pronounced omega), says that the growth rate of T(n) is greater than 

or equal to (>) that of g(n) 

 

4. T(n) = Θ(h(n)) (pronounced theta), says that the growth rate of T(n) equals (=) the 

growth rate of h(n) [if T(n) = O(h(n)) and T(n) = Ω (h(n)] 

 

5. T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than the 
growth rate of p(n) [if T(n) = O(p(n)) and T(n) ≠ Θ (p(n))]. 

 

Some Examples: 
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1.11. Analyzing Algorithms 

 

Suppose  ‗M‘  is  an  algorithm,  and  suppose  ‗n‘  is  the  size  of  the  input  data.  Clearly  the 
complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want to 
examine. This is usually done by comparing f(n) with some standard functions. The most common 
computing times are: 

O(1), O(log2 n), O(n), O(n. log2 n), O(n
2
), O(n

3
), O(2

n
), n! and n

n
 

 
Numerical Comparison of Different Algorithms 

 

The execution time for six of the typical functions is given below: 
 

       

S.No log n n n. log n n
2 

n
3 

2
n 

1 0 1 1 1 1 2 

2 1 2 2 4 8 4 

3 2 4 8 16 64 16 

4 3 8 24 64 512 256 

5 4 16 64 256 4096 65536 

 

Graph of log n, n, n log n, n
2
, n

3
, 2

n
, n! and n

n
 

 

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the convention 

will not have any particular units of time. Thus we throw away leading constants. We will also 

throw away low–order terms while computing a Big–Oh running time. Since Big-Oh is an upper 

bound, the answer provided is a guarantee that the program will terminate within a certain time 

period. The program may stop earlier than this, but never later. 



 

One way to compare the function f(n) with these standard function is to use the functional ‗O‘ 

notation, suppose f(n) and g(n) are functions defined on the positive integers with the property 

that f(n) is bounded by some multiple g(n) for almost all ‗n‘. Then, 

 

f(n) = O(g(n)) 

 

Which is read as ―f(n) is of order g(n)‖. For example, the order of complexity for: 

 

• Linear search is O(n) 
• Binary search is O(log n) 

• Bubble sort is O(n
2
) 

• Quick sort is O(n log n) 

For example, if the first program takes 100n
2 

milliseconds. While the second taken 5n
3 

milliseconds. Then might not 5n
3 

program better than 100n
2 

program? 

As the programs can be evaluated by comparing their running time functions, with constants by 

proportionality neglected. So, 5n
3 

program be better than the 100n
2 

program. 

5 n
3
/100 n

2 
= n/20 

for inputs n < 20, the program with running time 5n
3 

will be faster those the one with running 

time 100 n
2
. 

Therefore, if the program is to be run mainly on inputs of small size, we would indeed prefer the 

program whose running time was O(n
3
) 

However, as ‗n‘ gets large, the ratio of the running times, which is n/20, gets arbitrarily larger. 

Thus, as the size of the input increases, the O(n
3
) program will take significantly more time than 

the O(n
2
) program. So it is always better to prefer a program whose running time with the lower 

growth rate. The low growth rate function‘s such as O(n) or O(n log n) are always better. 

 

Exercises 

 

2. Define algorithm. 
 

3. State the various steps in developing algorithms? 

 

4. State the properties of algorithms. 

 

5. Define efficiency of an algorithm? 

 

6. State the various methods to estimate the efficiency of an algorithm. 

 

7. Define time complexity of an algorithm? 

 

8. Define worst case of an algorithm. 
 

9. Define average case of an algorithm. 

 

10. Define best case of an algorithm. 

 

11. Mention the various spaces utilized by a program. 



 

13. Define space complexity of an algorithm. 

 

14. State the different memory spaces occupied by an algorithm. 

 

Multiple Choice Questions 

 
1.   is a step-by-step recipe for solving an instance of problem. [ A ] 

A. Algorithm B. Complexity 

C. Pseudocode D. Analysis 

 

2.   is used to describe the algorithm, in less formal language. [ C ] 
A. Cannot be defined B. Natural Language 

C. Pseudocode D. None 

 

3.   of an algorithm is the amount of time (or the number of steps) [ D ] 

needed by a program to complete its task. 
A. Space Complexity B. Dynamic Programming 

C. Divide and Conquer D. Time Complexity 

 

4.   of a program is the amount of memory used at once by the [ C ] 

algorithm until it completes its execution. 

 
A. Divide and Conquer B. Time Complexity 

C. Space Complexity D. Dynamic Programming 

 

5.   is used to define the worst-case running time of an algorithm. [ A ] 
A. Big-Oh notation B. Cannot be defined 

C. Complexity D. Analysis 



 

Chapter 

4 
LINKED LISTS 

 

 
In this chapter, the list data structure is presented. This structure can be used 
as the basis for the implementation of other data structures (stacks, queues 

etc.). The basic linked list can be used without modification in many programs. 
However, some applications require enhancements to the linked list design. 
These enhancements fall into three broad categories and yield variations on 
linked lists that can be used in any combination: circular linked lists, double linked 
lists and lists with header nodes. 

 
 

Linked lists and arrays are similar since they both store collections of data. Array is the 

most common data structure used to store collections of elements. Arrays are convenient 

to declare and provide the easy syntax to access any element by its index number. Once 

the array is set up, access to any element is convenient and fast. The disadvantages of 

arrays are: 

 
• The size of the array is fixed. Most often this size is specified at compile time. 

This makes the programmers to allocate arrays, which seems "large enough" 
than required. 

 
• Inserting new elements at the front is potentially expensive because existing 

elements need to be shifted over to make room. 

 

• Deleting an element from an array is not possible. 
 

Linked lists have their own strengths and weaknesses, but they happen to be strong 

where arrays are weak. Generally array's allocates the memory for all its elements in one 

block whereas linked lists use an entirely different strategy. Linked lists allocate memory 

for each element separately and only when necessary. 

 
Here is a quick review of the terminology and rules of pointers. The linked list code 

will depend on the following functions: 

 

malloc() is a system function which allocates a block of memory in the "heap" and 

returns a pointer to the new block. The prototype of malloc() and other heap functions 

are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by: 
 

void *malloc (number_of_bytes) 

 

Since a void * is returned the C standard states that this pointer can be converted to 

any type. For example, 

char *cp; 

cp = (char *) malloc (100); 

 

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the 

sizeof() function to specify the number of bytes. For example, 

 

int *ip; 

ip = (int *) malloc (100*sizeof(int)); 



 

free() is the opposite of malloc(), which de-allocates memory. The argument to free() is 

a pointer to a block of memory in the heap — a pointer which was obtained by a malloc() 

function. The syntax is: 

 

free (ptr); 

 

The advantage of free() is simply memory management when we no longer need a block. 

 

Linked List Concepts: 

 
A linked list is a non-sequential collection of data items. It is a dynamic data structure. 
For every data item in a linked list, there is an associated pointer that would give the 
memory location of the next data item in the linked list. 

 

The data items in the linked list are not in consecutive memory locations. They may be 

anywhere, but the accessing of these data items is easier as each data item contains the 

address of the next data item. 

 

Advantages of linked lists: 
 

Linked lists have many advantages. Some of the very important advantages are: 

 

1.7. Linked lists are dynamic data structures. i.e., they can grow or shrink during 
the execution of a program. 

1.8. Linked lists have efficient memory utilization. Here, memory is not pre- 
allocated. Memory is allocated whenever it is required and it is de-allocated 
(removed) when it is no longer needed. 

1.9. Insertion and Deletions are easier and efficient. Linked lists provide flexibility 

in inserting a data item at a specified position and deletion of the data item 
from the given position. 

1.10. Many complex applications can be easily carried out with linked lists. 

 

Disadvantages of linked lists: 

 

It consumes more space because every node requires a additional pointer to 

store address of the next node. 
Searching a particular element in list is difficult and also time consuming. 

 

Types of Linked Lists: 

 

Basically we can put linked lists into the following four items: 

 

1. Single Linked List. 

2. Double Linked List. 

3. Circular Linked List. 

4. Circular Double Linked List. 

 
A single linked list is one in which all nodes are linked together in some sequential 
manner. Hence, it is also called as linear linked list. 



 

A double linked list is one in which all nodes are linked together by multiple links which 

helps in accessing both the successor node (next node) and predecessor node (previous 

node) from any arbitrary node within the list. Therefore each node in a double linked list 

has two link fields (pointers) to point to the left node (previous) and the right node (next). 

This helps to traverse in forward direction and backward direction. 

 

A circular linked list is one, which has no beginning and no end. A single linked list can 

be made a circular linked list by simply storing address of the very first node in the link 

field of the last node. 

 

A circular double linked list is one, which has both the successor pointer and predecessor 

pointer in the circular manner. 

 

Comparison between array and linked list: 

 

ARRAY LINKED LIST 

Size of an array is fixed Size of a list is not fixed 

Memory is allocated from stack Memory is allocated from heap 

It is necessary to specify the number of 
elements during declaration (i.e., during 
compile time). 

It is not necessary to specify the 
number of elements during declaration 
(i.e., memory is allocated during run 
time). 

It occupies less memory than a linked 
list for the same number of elements. 

It occupies more memory. 

Inserting new elements at the front is 
potentially expensive because existing 
elements need to be shifted over to 
make room. 

Inserting a new element at any position 
can be carried out easily. 

Deleting an element from an array is 
not possible. 

Deleting an element is possible. 

 

 
Trade offs between linked lists and arrays: 

 
 

FEATURE ARRAYS LINKED LISTS 

Sequential access efficient efficient 

Random access efficient inefficient 

Resigning inefficient efficient 

Element rearranging inefficient efficient 

Overhead per elements none 1 or 2 links 
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Applications of linked list: 

 

1. Linked lists are used to represent and manipulate polynomial. Polynomials are 

expression containing terms with non zero coefficient and exponents. For 

example: 

P(x) = a0 X
n 

+ a1 X
n-1 

+ …… + an-1 X + an 

2. Represent very large numbers and operations of the large number such 
as addition, multiplication and division. 

 

3. Linked lists are to implement stack, queue, trees and graphs. 
 

4. Implement the symbol table in compiler construction 

 

Single Linked List: 

 

A linked list allocates space for each element separately in its own block of memory called 

a "node". The list gets an overall structure by using pointers to connect all its nodes 

together like the links in a chain. Each node contains two fields; a "data" field to store 

whatever element, and a "next" field which is a pointer used to link to the next node. 

Each node is allocated in the heap using malloc(), so the node memory continues to exist 

until it is explicitly de-allocated using free(). The front of the list is a pointer to the ―start‖ 

node. 

 

A single linked list is shown in figure 3.2.1. 
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Figure 3.2.1. Single Linked List 

 

 

The beginning of the linked list is stored in a "start" pointer which points to the first 

node. The first node contains a pointer to the second node. The second node contains a 

pointer to the third node, ... and so on. The last node in the list has its next field set to 

NULL to mark the end of the list. Code can access any node in the list by starting at the 

start and following the next pointers. 

 

The start pointer is an ordinary local pointer variable, so it is drawn separately on the 

left top to show that it is in the stack. The list nodes are drawn on the right to show that 

they are allocated in the heap. 



 

Implementation of Single Linked List: 

 

Before writing the code to build the above list, we need to create a start node, used to 

create and access other nodes in the linked list. The following structure definition will do 

(see figure 3.2.2): 

 
• Creating a structure with one data item and a next pointer, which will be 

pointing to next node of the list. This is called as self-referential structure. 

 

• Initialise the start pointer to be NULL. 

 
 

Figure 3.2.2. Structure definition, single link node and empty list 

 

The basic operations in a single linked list are: 

 

5. Creation. 

6. Insertion. 

7. Deletion. 

8. Traversing. 

 
Creating a node for Single Linked List: 

 

Creating a singly linked list starts with creating a node. Sufficient memory has to be 

allocated for creating a node. The information is stored in the memory, allocated by using 

the malloc() function. The function getnode(), is used for creating a node, after allocating 

memory for the structure of type node, the information for the item (i.e., data) has to be 

read from the user, set next field to NULL and finally returns the address of the node. 

Figure 3.2.3 illustrates the creation of a node for single linked list. 

 

node* getnode() 

{ 

node* newnode; 

newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 

newnode -> next = NULL; return 

newnode; 
} 
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Figure 3.2.3. new node with a value of 10 

struct slinklist 

{ 

int data; 

struct slinklist* next; 

}; 

 
typedef struct slinklist node; 

node *start = NULL; 
Empty list: 

start 

node: next data 

NULL 



 

Creating a Singly Linked List with ‘n’ number of nodes: 

 

The following steps are to be followed to create ‗n‘ number of nodes: 

 

• Get the new node using getnode(). 
newnode = getnode(); 

 

• If the list is empty, assign new node as start. 

start = newnode; 
 

• If the list is not empty, follow the steps given below: 

 

• The next field of the new node is made to point the first node (i.e. 

start node) in the list by assigning the address of the first node. 
 

• The start pointer is made to point the new node by assigning the 

address of the new node. 
 

• Repeat the above steps ‗n‘ times. 

 
Figure 3.2.4 shows 4 items in a single linked list stored at different locations in 
memory. 

 

Figure 3.2.4. Single Linked List with 4 nodes 
 

The function createlist(), is used to create ‗n‘ number of nodes: 

 

start 

100 

10 200 

100 

20 300 

200 

30 400 

300 

40  

400 

vo id createlist(int n) 
{ 

int i; 

no de * new no 
de; no de *tem p; 
for(i = 0; i < n ; i+ +) 
{ 

new no de = getno de(); 
if(start = = NULL) 
{ 

start = new no de; 
} 
else 
{ 

tem p = start; 

w hile(tem p - > next != NULL) 
tem p = tem p - > next; 

tem p - > next = new no de; 
} 

} 
} 



 

Insertion of a Node: 

 

One of the most primitive operations that can be done in a singly linked list is the insertion 

of a node. Memory is to be allocated for the new node (in a similar way that is done while 

creating a list) before reading the data. The new node will contain empty data field and 

empty next field. The data field of the new node is then stored with the information read 

from the user. The next field of the new node is assigned to NULL. The new node can 

then be inserted at three different places namely: 

 

# Inserting a node at the beginning. 

# Inserting a node at the end. 

# Inserting a node at intermediate position. 

 
Inserting a node at the beginning: 

 

The following steps are to be followed to insert a new node at the beginning of the list: 

 
• Get the new node using getnode(). 

newnode = getnode(); 

 

• If the list is empty then start = newnode. 
 

• If the list is not empty, follow the steps given below: 
newnode -> next = start; 
start = newnode; 

 

Figure 3.2.5 shows inserting a node into the single linked list at the beginning. 
 

Figure 3.2.5. Inserting a node at the beginning 

The function insert_at_beg(), is used for inserting a node at the beginning 

 
void insert_at_beg() 

{ 
node *newnode; 

newnode = getnode(); 

if(start == NULL) 

{ 

 
} 
else 

{ 

 

} 
} 

start = newnode; 

 

 
newnode -> next = 
start; start = newnode; 

start 

500 

10 200 

100 

20 300 

200 

30 400 

300 

40  

400 

5 100 

500 



 

Inserting a node at the end: 

 

The following steps are followed to insert a new node at the end of the list: 

 
# Get the new node using getnode() 

newnode = getnode(); 

 

# If the list is empty then start = newnode. 

 

# If the list is not empty follow the steps given below: 
temp = start; 

while(temp -> next != NULL) 

temp = temp -> next; 
temp -> next = newnode; 

 

Figure 3.2.6 shows inserting a node into the single linked list at the end. 
 

Figure 3.2.6. Inserting a node at the end. 

 
 

The function insert_at_end(), is used for inserting a node at the end. 

 
void insert_at_end() 

{ 
node *newnode, *temp; 

newnode = getnode(); 

if(start == NULL) 

{ 

 
} 
else 

{ 

 

 

 
} 

} 

start = newnode; 

 

 
temp = start; 

while(temp -> next != NULL) 

temp = temp -> next; 
temp -> next = newnode; 

 
 

Inserting a node at intermediate position: 

 

The following steps are followed, to insert a new node in an intermediate position in the 

list: 

 

• Get the new node using getnode(). 

newnode = getnode(); 
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• Ensure that the specified position is in between first node and last node. If 
not, specified position is invalid. This is done by countnode() function. 

 
• Store the starting address (which is in start pointer) in temp and prev pointers. 

Then traverse the temp pointer upto the specified position followed by prev 
pointer. 

 
• After reaching the specified position, follow the steps given below: 

prev -> next = newnode; 
newnode -> next = temp; 

 

12 Let the intermediate position be 3. 

 

Figure 3.2.7 shows inserting a node into the single linked list at a specified intermediate 

position other than beginning and end. 
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Figure 3.2.7. Inserting a node at an intermediate position. 

 

 
The function insert_at_mid(), is used for inserting a node in the intermediate position. 

 
void insert_at_mid() 

{ 

node *newnode, *temp, *prev; 
int pos, nodectr, ctr = 1; 
newnode = getnode(); 
printf("\n Enter the position: "); 
scanf("%d", &pos); 
nodectr = countnode(start); 

if(pos > 1 && pos < nodectr) 

{ 

temp = prev = start; 

while(ctr < pos) 
{ 

prev = temp; 
temp = temp -> 
next; ctr++; 

} 

 

} 
else 

{ 
 

} 

} 

prev -> next = newnode; 

newnode -> next = temp; 

 

 
printf("position %d is not a middle position", pos); 



free(temp); 

printf("\n Node deleted "); 

} 
} 

 

Deletion of a node: 

 
Another primitive operation that can be done in a singly linked list is the deletion of a 
node. Memory is to be released for the node to be deleted. A node can be deleted from 
the list from three different places namely. 

 

• Deleting a node at the beginning. 

• Deleting a node at the end. 

• Deleting a node at intermediate position. 

 

 
Deleting a node at the beginning: 

 

The following steps are followed, to delete a node at the beginning of the list: 

 

• If list is empty then display ‗Empty List‘ message. 

 
• If the list is not empty, follow the steps given below: 

temp = start; 

start = start -> next; 

free(temp); 

 

Figure 3.2.8 shows deleting a node at the beginning of a single linked list. 

 

 

 

 

 

 

 

 

Figure 3.2.8. Deleting a node at the beginning. 

 
 

The function delete_at_beg(), is used for deleting the first node in the list. 

 
void delete_at_beg() 

{ 
node *temp; 

if(start == NULL) 

{ 

 

} 
else 

{ 

printf("\n No nodes are exist.."); 
return ; 

 

 
temp = start; 

start = temp -> next; 
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free(temp); 

printf("\n Node deleted "); 

} 
} 

 

Deleting a node at the end: 

 

The following steps are followed to delete a node at the end of the list: 

 

7.4.1. If list is empty then display ‗Empty List‘ message. 

7.4.2. If the list is not empty, follow the steps given below: 

temp = prev = start; 

while(temp -> next != NULL) 
{ 

prev = temp; 

temp = temp -> next; 

} 

prev -> next = NULL; 
free(temp); 

 

Figure 3.2.9 shows deleting a node at the end of a single linked list. 

 

Figure 3.2.9. Deleting a node at the end. 

 

 
The function delete_at_last(), is used for deleting the last node in the list. 

 
void delete_at_last() 
{ 

node *temp, *prev; 
if(start == NULL) 
{ 

 

} 

else 

{ 

printf("\n Empty 
List.."); return ; 

 

 
temp = start; 

prev = start; 

while(temp -> next != NULL) 
{ 

prev = temp; 

temp = temp -> next; 
} 

prev -> next = NULL; 
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Deleting a node at Intermediate position: 

 

The following steps are followed, to delete a node from an intermediate position in the 

list (List must contain more than two node). 
 

# If list is empty then display ‗Empty List‘ message 

 
# If the list is not empty, follow the steps given below. 

if(pos > 1 && pos < nodectr) 
{ 

temp = prev = start; 

ctr = 1; 
while(ctr < pos) 

{ 

prev = temp; 

temp = temp -> next; 

ctr++; 
} 

prev -> next = temp -> next; 

free(temp); 
printf("\n node deleted.."); 

} 
 

Figure 3.2.10 shows deleting a node at a specified intermediate position other than 

beginning and end from a single linked list. 

 

Figure 3.2.10. Deleting a node at an intermediate position. 

 
The function delete_at_mid(), is used for deleting the intermediate node in the list. 

 
void delete_at_mid() 

{ 

int ctr = 1, pos, 

nodectr; node *temp, 
*prev; if(start == NULL) 

{ 

 

} 
else 

{ 

printf("\n Empty 
List.."); return ; 

 

 
printf("\n Enter position of node to delete: "); 
scanf("%d", &pos); 

nodectr = countnode(start); 
if(pos > nodectr) 
{ 

printf("\nThis node doesnot exist"); 

} 
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if(pos > 1 && pos < nodectr) 

{ 

temp = prev = start; 
while(ctr < pos) 
{ 

prev = temp; 
temp = temp -> 
next; ctr ++; 

} 

 

 
} 
else 

{ 

 

} 

prev -> next = temp -> next; 
free(temp); 
printf("\n Node deleted.."); 

 

 
printf("\n Invalid position.."); 
getch(); 

 

} 

} 

 
 

Traversal and displaying a list (Left to Right): 

 
To display the information, you have to traverse (move) a linked list, node by node from 
the first node, until the end of the list is reached. Traversing a list involves the following 
steps: 

 

7.4.2. Assign the address of start pointer to a temp pointer. 

7.4.3. Display the information from the data field of each node. 

 
The function traverse() is used for traversing and displaying the information stored in 

the list from left to right. 

 

 

Alternatively there is another way to traverse and display the information. That is in 

reverse order. The function rev_traverse(), is used for traversing and displaying the 

information stored in the list from right to left. 

void traverse() 

{ 
node *temp; 

temp = start; 

printf("\n The contents of List (Left to Right): 

\n"); if(start == NULL ) 

printf("\n Empty List"); 

else 

{ 

while (temp != NULL) 

{ 

printf("%d ->", temp -> 

data); temp = temp -> next; 

} 

} 

printf("X"); 

} 



 

 
 

 
 

Counting the Number of Nodes: 

 

The following code will count the number of nodes exist in the list using recursion. 

 

 

Source Code for the Implementation of Single Linked List: 

 
include <stdio.h> 
include <conio.h> 
include <stdlib.h> 

 

struct slinklist 

{ 
int data; 
struct slinklist *next; 

}; 
 

typedef struct slinklist node; 

 
node *start = NULL; 

int menu() 
{ 

int ch; 

clrscr(); 

printf("\n 1.Create a list "); 
printf("\n ------------------------- "); 

printf("\n 2.Insert a node at beginning "); 
printf("\n 3.Insert a node at end"); 
printf("\n 4.Insert a node at middle"); 
printf("\n  "); 
printf("\n 5.Delete a node from beginning"); 
printf("\n 6.Delete a node from Last"); 

printf("\n 7.Delete a node from Middle"); 
printf("\n  "); 
printf("\n 8.Traverse the list (Left to Right)"); 

printf("\n 9.Traverse the list (Right to Left)"); 

vo id rev_traverse(no de *st) 
{ 

if(st = = NULL) 
{ 

return; 
} 
else 
{ 

rev_traverse(st - > next); 
printf("%d - >", st - > data); 

} 
} 

int co untno de(no de *st) 
{ 

if(st = = NULL) 
return 0; 

else 
return(1 + co untno de(st - > next)); 

} 



 

printf("\n  "); 

printf("\n 10. Count nodes "); 

printf("\n 11. Exit "); 

printf("\n\n Enter your choice: "); 
scanf("%d",&ch); 
return ch; 

} 
 

node* getnode() 

{ 

node * newnode; 
newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 
newnode -> next = NULL; return 
newnode; 

} 
 

int countnode(node *ptr) 

{ 
int count=0; 

while(ptr != NULL) 

{ 
count++; 
ptr = ptr -> next; 

} 
return (count); 

} 
 

void createlist(int n) 
{ 

int i; 

node *newnode; 
node *temp; 
for(i = 0; i < n; i++) 
{ 

newnode = getnode(); 

if(start == NULL) 

{ 

 
} 
else 

{ 

 
 

 
} 

} 

} 

start = newnode; 

 

 
temp = start; 
while(temp -> next != NULL) 

temp = temp -> next; 

temp -> next = newnode; 

 

void traverse() 

{ 
node *temp; 

temp = start; 

printf("\n The contents of List (Left to Right): \n"); 
if(start == NULL) 
{ 

 

} 
else 

{ 

printf("\n Empty List"); 
return; 



 

while(temp != NULL) 

{ 

printf("%d-->", temp -> 
data); temp = temp -> next; 

} 
} 
printf(" X "); 

} 
 

void rev_traverse(node *start) 
{ 

if(start == NULL) 
{ 

 

} 

else 

{ 

 

} 

} 

return; 

 

 
rev_traverse(start -> next); 

printf("%d -->", start -> data); 

 

void insert_at_beg() 

{ 
node *newnode; 

newnode = getnode(); 

if(start == NULL) 

{ 

 

} 

else 

{ 

 

} 

} 

start = newnode; 

 

 
newnode -> next = 
start; start = newnode; 

 

void insert_at_end() 

{ 
node *newnode, *temp; 

newnode = getnode(); 

if(start == NULL) 

{ 

 

} 

else 

{ 

 
 

 
} 

} 

start = newnode; 

 

 
temp = start; 

while(temp -> next != NULL) 

temp = temp -> next; 
temp -> next = newnode; 

 

void insert_at_mid() 
{ 

node *newnode, *temp, *prev; 
int pos, nodectr, ctr = 1; 
newnode = getnode(); 
printf("\n Enter the position: "); 

scanf("%d", &pos); 
nodectr = countnode(start); 



 

if(pos > 1 && pos < nodectr) 

{ 

temp = prev = start; 
while(ctr < pos) 
{ 

prev = temp; 
temp = temp -> 
next; ctr++; 

} 

 

} 

else 

 
} 

prev -> next = newnode; 
newnode -> next = temp; 

 

printf("position %d is not a middle position", pos); 

 

void delete_at_beg() 

{ 
node *temp; 

if(start == NULL) 

{ 

 

} 
else 

{ 

 
 

 
} 

} 

printf("\n No nodes are exist.."); 

return ; 

 

 
temp = start; 

start = temp -> next; 
free(temp); 
printf("\n Node deleted "); 

 

void delete_at_last() 
{ 

node *temp, *prev; 

if(start == NULL) 
{ 

 

} 

else 

{ 

printf("\n Empty 
List.."); return ; 

 

 
temp = start; 

prev = start; 

while(temp -> next != NULL) 

{ 
prev = temp; 
temp = temp -> next; 

} 
prev -> next = NULL; 
free(temp); 

printf("\n Node deleted "); 
} 

} 
 

void delete_at_mid() 
{ 

int ctr = 1, pos, 
nodectr; node *temp, 
*prev; if(start == NULL) 

{ 

printf("\n Empty List.."); 



 

 
} 
else 

{ 

return ; 

 

 
printf("\n Enter position of node to delete: "); 
scanf("%d", &pos); 
nodectr = countnode(start); 
if(pos > nodectr) 
{ 

printf("\nThis node doesnot exist"); 

 

} 
if(pos > 1 && pos < nodectr) 

{ 

temp = prev = start; 
while(ctr < pos) 
{ 

prev = temp; 
temp = temp -> 
next; ctr ++; 

} 

 

 
} 

else 

{ 

 

} 
} 

} 

prev -> next = temp -> next; 
free(temp); 
printf("\n Node deleted.."); 

 

 
printf("\n Invalid position.."); 
getch(); 

 

void main(void) 

{ 

int ch, n; 
clrscr(); 
while(1) 
{ 

ch = menu(); 
switch(ch) 
{ 

case 1: 
if(start == NULL) 
{ 

 
 

 
 
 

 

case 2: 

 
 

 
} 

else 

printf("\n Number of nodes you want to create: "); 
scanf("%d", &n); 
createlist(n); 
printf("\n List created.."); 

 

printf("\n List is already created.."); 
break; 

 

case 3: 

 

case 4: 

insert_at_beg(); 
break; 

 

insert_at_end(); 
break; 

 
insert_at_mid(); 

break; 



 

case 5: 

 

case 6: 

 

case 7: 

 

case 8: 

 

case 9: 

 
delete_at_beg(); 
break; 

 

delete_at_last(); 
break; 

 
delete_at_mid(); 

break; 

 

traverse(); 
break; 

 
printf("\n The contents of List (Right to Left): \n"); 
rev_traverse(start); 

printf(" X "); 
break; 

case 10: 

printf("\n No of nodes : %d ", countnode(start)); 
break; 

case 11 : 
exit(0); 

} 

getch(); 

} 

} 

 
 

Using a header node: 

 

A header node is a special dummy node found at the front of the list. The use of header 
node is an alternative to remove the first node in a list. For example, the picture below 
shows how the list with data 10, 20 and 30 would be represented using a linked list 
without and with a header node: 

 

Single Linke d List w it ho ut a he a der no de 

 

Single Linke d List w it h he a der no de 

 

Note that if your linked lists do include a header node, there is no need for the special 
case code given above for the remove operation; node n can never be the first node in 
the list, so there is no need to check for that case. Similarly, having a header node can 
simplify the code that adds a node before a given node n. 
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Note that if you do decide to use a header node, you must remember to initialize an 

empty list to contain one (dummy) node, you must remember not to include the header 

node in the count of "real" nodes in the list. 

 

It is also useful when information other than that found in each node of the list is needed. 

For example, imagine an application in which the number of items in a list is often 

calculated. In a standard linked list, the list function to count the number of  nodes has 

to traverse the entire list every time. However, if the current length is maintained in a 

header node, that information can be obtained very quickly. 

 

Array based linked lists: 

 

Another alternative is to allocate the nodes in blocks. In fact, if you know the maximum 

size of a list a head of time, you can pre-allocate the nodes in a single array. The result 

is a hybrid structure – an array based linked list. Figure 3.5.1 shows an example of null 

terminated single linked list where all the nodes are allocated contiguously in an array. 
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Figure 3.5.1. An array based linked list 

 

Double Linked List: 

 

A double linked list is a two-way list in which all nodes will have two links. This helps in 

accessing both successor node and predecessor node from the given node position. It 

provides bi-directional traversing. Each node contains three fields: 

 

• Left link. 

• Data. 

• Right link. 

 

The left link points to the predecessor node and the right link points to the successor 

node. The data field stores the required data. 

 

Many applications require searching forward and backward thru nodes of a list. 

For example searching for a name in a telephone directory would need forward 

and backward scanning thru a region of the whole list. 
 

The basic operations in a double linked list are: 

 
• Creation. 

• Insertion. 

• Deletion. 

• Traversing. 
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A double linked list is shown in figure 3.3.1. 
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Figure 3.3.1. Double Linked List 

 

The beginning of the double linked list is stored in a "start" pointer which points to the 

first node. The first node‘s left link and last node‘s right link is set to NULL. 

 

The following code gives the structure definition: 
 

Figure 3.4.1. Structure definition, double link node and empty list 

 

Creating a node for Double Linked List: 

 

Creating a double linked list starts with creating a node. Sufficient memory has to be 

allocated for creating a node. The information is stored in the memory, allocated by using 

the malloc() function. The function getnode(), is used for creating a node, after allocating 

memory for the structure of type node, the information for the item (i.e., data) has to 

be read from the user and set left field to NULL and right field also set to NULL (see figure 

3.2.2). 

 

Figure 3.4.2. new node with a value of 10 
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{ 

struct dlinklist *left; 

int data; 

struct dlinklist *right; 

 
}; 

typedef struct dlinklist node; 

node *start = NULL; 

struct dlinklist 

node* getnode() 

{ 
node* newnode; 
newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 

newnode -> left = NULL; 

newnode -> right = NULL; 

return newnode; 

} 



 

Creating a Double Linked List with ‘n’ number of nodes: 

 

The following steps are to be followed to create ‗n‘ number of nodes: 

 

• Get the new node using getnode(). 
 

newnode =getnode(); 

 

• If the list is empty then start = newnode. 

 

• If the list is not empty, follow the steps given below: 
 

• The left field of the new node is made to point the previous node. 

 

• The previous nodes right field must be assigned with address of the 

new node. 
 

• Repeat the above steps ‗n‘ times. 

 

The function createlist(), is used to create ‗n‘ number of nodes: 

 

 

Figure 3.4.3 shows 3 items in a double linked list stored at different locations. 
 

Figure 3.4.3. Double Linked List with 3 nodes 

vo id createlist(int n) 
{ 

int i; 

no de * new no 
de; no de *tem p; 
for(i = 0; i < n; i+ +) 
{ 

new no de = getno de(); 
if(start = = NULL) 
{ 

start = new no de; 
} 
else 
{ 

tem p = start; 
w hile(tem p - > right) 

tem p = tem p - > right; 
tem p - > right = new no de; new 
no de - > left = tem p; 

} 
} 

} 
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Inserting a node at the beginning: 

 

The following steps are to be followed to insert a new node at the beginning of the list: 

 

# Get the new node using getnode(). 
 

newnode=getnode(); 

 

• If the list is empty then start = newnode. 

• If the list is not empty, follow the steps given below: 

newnode -> right = start; 

start -> left = newnode; 
start = newnode; 

 
The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure 

3.4.4 shows inserting a node into the double linked list at the beginning. 
 

Figure 3.4.4. Inserting a node at the beginning 

 
Inserting a node at the end: 

 

The following steps are followed to insert a new node at the end of the list: 

 
• Get the new node using getnode() 

newnode=getnode(); 

• If the list is empty then start = newnode. 

• If the list is not empty follow the steps given below: 

temp = start; 

while(temp -> right != NULL) 

temp = temp -> right; 

temp -> right = newnode; 

newnode -> left = temp; 

 

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5 

shows inserting a node into the double linked list at the end. 
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Figure 3.4.5. Inserting a node at the end 

 

 
Inserting a node at an intermediate position: 

 

The following steps are followed, to insert a new node in an intermediate position in the 

list: 

 

• Get the new node using getnode(). 

 

newnode=getnode(); 

 

# Ensure that the specified position is in between first node and last node. If 

not, specified position is invalid. This is done by countnode() function. 

 

# Store the starting address (which is in start pointer) in temp and prev pointers. 

Then traverse the temp pointer upto the specified position followed by prev 

pointer. 

# After reaching the specified position, follow the steps given below: 

newnode -> left = temp; newnode 

-> right = temp -> right; temp -> 

right -> left = newnode; temp -> 

right = newnode; 

 

The function dbl_insert_mid(), is used for inserting a node in the intermediate position. 

Figure 3.4.6 shows inserting a node into the double linked list at a specified intermediate 

position other than beginning and end. 

 

Figure 3.4.6. Inserting a node at an intermediate position 
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Deleting a node at the beginning: 

 

The following steps are followed, to delete a node at the beginning of the list: 

 

• If list is empty then display ‗Empty List‘ message. 

• If the list is not empty, follow the steps given below: 

temp = start; 

start = start -> right; 
start -> left = NULL; 
free(temp); 

 
The function dbl_delete_beg(), is used for deleting the first node in the list. Figure 

3.4.6 shows deleting a node at the beginning of a double linked list. 
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Figure 3.4.6. Deleting a node at beginning 

 

 

Deleting a node at the end: 

 

The following steps are followed to delete a node at the end of the list: 

• If list is empty then display ‗Empty List‘ message 

• If the list is not empty, follow the steps given below: 

temp = start; 
while(temp -> right != NULL) 

{ 
temp = temp -> right; 

} 

temp -> left -> right = NULL; 
free(temp); 

 

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7 

shows deleting a node at the end of a double linked list. 
 

Figure 3.4.7. Deleting a node at the end 
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Deleting a node at Intermediate position: 

 

The following steps are followed, to delete a node from an intermediate position in the 

list (List must contain more than two nodes). 
 

5 If list is empty then display ‗Empty List‘ message. 
 

6 If the list is not empty, follow the steps given below: 
 

40 Get the position of the node to delete. 

 

41 Ensure that the specified position is in between first node and last 

node. If not, specified position is invalid. 
 

42 Then perform the following steps: 

if(pos > 1 && pos < nodectr) 

{ 

temp = start; 

i = 1; 
while(i < pos) 

{ 

temp = temp -> right; 
i++; 

} 

temp -> right -> left = temp -> left; 

temp -> left -> right = temp -> right; 

free(temp); 
printf("\n node deleted.."); 

} 
 

The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure 

3.4.8 shows deleting a node at a specified intermediate position other than beginning 

and end from a double linked list. 
 

Figure 3.4.8 Deleting a node at an intermediate position 

 
 

Traversal and displaying a list (Left to Right): 

 

To display the information, you have to traverse the list, node by node from the first 

node, until the end of the list is reached. The function traverse_left_right() is used for 

traversing and displaying the information stored in the list from left to right. 
 

The following steps are followed, to traverse a list from left to right: 

 

5. If list is empty then display ‗Empty List‘ message. 
 

6. If the list is not empty, follow the steps given below: 
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temp = start; 

while(temp != NULL) 

{ 

print temp -> data; 

temp = temp -> right; 
} 

 
 

Traversal and displaying a list (Right to Left): 

 

To display the information from right to left, you have to traverse the list, node by node 

from the first node, until the end of the list is reached. The function traverse_right_left() 

is used for traversing and displaying the information stored in the list from right to left. 

The following steps are followed, to traverse a list from right to left: 
 

4.6. If list is empty then display ‗Empty List‘ message. 

 

4.7. If the list is not empty, follow the steps given below: 

temp = start; 

while(temp -> right != NULL) 

temp = temp -> right; 
while(temp != NULL) 

{ 

print temp -> data; 

temp = temp -> left; 
} 

 
 

Counting the Number of Nodes: 
 

The following code will count the number of nodes exist in the list (using recursion). 

 

 

A Complete Source Code for the Implementation of Double Linked List: 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 

 
struct dlinklist 
{ 

struct dlinklist *left; 
int data; 
struct dlinklist *right; 

}; 
 

typedef struct dlinklist node; 
node *start = NULL; 

int co untno de(no de *start) 
{ 

if(start = = NULL) 
return 0; 

else 
return(1 + co untno de(start - >right )); 

} 



} 

} 
 

node* getnode() 

{ 

node * newnode; 
newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 
newnode -> left = NULL; 

newnode -> right = NULL; 
return newnode; 

} 
 

int countnode(node *start) 

{ 
if(start == NULL) 

return 0; 

else 
 

} 

 
return 1 + countnode(start -> right); 

 

int menu() 
{ 

int ch; 
clrscr(); 
printf("\n 1.Create"); 

printf("\n 

 

 
"); 

printf("\n 2. Insert a node at beginning "); 

printf("\n 3. Insert a node at end"); 
printf("\n 4. Insert a node at middle"); 
printf("\n  "); 
printf("\n 5. Delete a node from beginning"); 

printf("\n 6. Delete a node from Last"); 
printf("\n 7. Delete a node from Middle"); 
printf("\n  "); 

printf("\n 8. Traverse the  list  from  Left  to  Right 
"); printf("\n 9. Traverse  the  list  from  Right  to 
Left "); printf("\n  "); 
printf("\n 10.Count the Number of nodes in the list"); 
printf("\n 11.Exit "); 
printf("\n\n Enter your choice: "); 

scanf("%d", &ch); 
return ch; 

} 
 

void createlist(int n) 
{ 

int i; 

node *newnode; 
node *temp; 

for(i = 0; i < n; i++) 
{ 

newnode = getnode(); 

if(start == NULL) 

start = newnode; 

else 
{ 

 

 
 

 
} 



} 

} 
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; newnode -> left = temp; 



} 

} 
 

void traverse_left_to_right() 

{ 
node *temp; 

temp = start; 

printf("\n The contents of List: 
"); if(start == NULL ) 

printf("\n Empty List"); 
else 

{ 
while(temp != NULL) 

{ 
printf("\t %d ", temp -> data); 
temp = temp -> right; 

} 
} 

} 
void traverse_right_to_left() 

{ 
node *temp; 

temp = start; 

printf("\n The contents of List: 
"); if(start == NULL) 

printf("\n Empty List"); 
else 

{ 

 

} 

 

while(temp -> right != NULL) 
temp = temp -> right; 

while(temp != NULL) 

{ 

printf("\t%d", temp -> 
data); temp = temp -> left; 

} 
} 
void dll_insert_beg() 

{ 
node *newnode; 

newnode = getnode(); 

if(start == NULL) 

start = newnode; 

else 

{ 

 

 
} 

} 

 

newnode -> right = start; 
start -> left = newnode; 
start = newnode; 

 

void dll_insert_end() 
{ 

node *newnode, *temp; 

newnode = getnode(); 

if(start == NULL) 

start = newnode; 
else 
{ 

 

temp = start; 

while(temp -> right != NULL) 
temp = temp -> right; 



} 

} 
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while(temp -> right != NULL) 
 

void dll_insert_mid() 

{ 

node *newnode,*temp; 
int pos, nodectr, ctr = 1; 
newnode = getnode(); 
printf("\n Enter the position: "); 
scanf("%d", &pos); 

nodectr = countnode(start); 
if(pos - nodectr >= 2) 
{ 

printf("\n Position is out of range.."); 
return; 

} 
if(pos > 1 && pos < nodectr) 

{ 
temp = start; 

while(ctr < pos - 1) 

{ 

temp = temp -> right; 
ctr++; 

} 

 
 

 
} 

else 

 
} 

newnode -> left = temp; newnode 

-> right = temp -> right; temp -> 
right -> left = newnode; temp -> 

right = newnode; 

 

printf("position %d of list is not a middle position ", pos); 

 

void dll_delete_beg() 
{ 

node *temp; 

if(start == NULL) 

{ 

 

 
} 
else 

{ 

 

 

 
} 

} 

printf("\n Empty 
list"); getch(); 
return ; 

 

 
temp = start; 

start = start -> right; 
start -> left = NULL; 
free(temp); 

 

void dll_delete_last() 

{ 
node *temp; 

if(start == NULL) 

{ 

 

 
} 
else 

{ 



while(temp -> right != NULL) 
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temp = start; 



createlist(n); 
 

temp = temp -> right; 

temp -> left -> right = NULL; 
free(temp); 
temp = NULL; 

} 

} 
 

void dll_delete_mid() 

{ 
int i = 0, pos, nodectr; 
node *temp; 
if(start == NULL) 

{ 

 

 
} 

else 

{ 

printf("\n Empty List"); 
getch(); 
return; 

 

 
printf("\n Enter the position of the node to delete: "); 
scanf("%d", &pos); 
nodectr = countnode(start); 
if(pos > nodectr) 
{ 

printf("\nthis node does not 
exist"); getch(); 
return; 

} 

if(pos > 1 && pos < nodectr) 
{ 

temp = 
start; i = 1; 
while(i < pos) 

{ 
temp = temp -> right; 
i++; 

} 

 

 

 
} 
else 

{ 

 

} 
} 

} 

temp -> right -> left = temp -> left; 
temp -> left -> right = temp -> right; 
free(temp); 

printf("\n node deleted.."); 

 

 
printf("\n It is not a middle position.."); 
getch(); 

 

void main(void) 

{ 

int ch, n; 
clrscr(); 
while(1) 
{ 

ch = menu(); 
switch( ch) 
{ 

case 1 : 

printf("\n Enter Number of nodes to create: "); 



createlist(n); 

 

scanf("%d", &n); 



 

printf("\n List 
created.."); break; 

case 2 : 

dll_insert_beg(); 
break; 

case 3 : 

dll_insert_end(); 
break; 

case 4 : 

dll_insert_mid(); 
break; 

case 5 : 

dll_delete_beg(); 
break; 

case 6 : dll_delete_last(); 

break; 
 

case 7 : 

dll_delete_mid(); 
break; 

case 8 : 

traverse_left_to_right(); 
break; 

case 9 : 

traverse_right_to_left(); 
break; 

 

case 10 : 

printf("\n Number of nodes: %d", countnode(start)); 
break; 

case 11: 
exit(0); 

} 
getch(); 

} 

} 

 

 

Circular Single Linked List: 

 

It is just a single linked list in which the link field of the last node points back to the 

address of the first node. A circular linked list has no beginning and no end. It is necessary 

to establish a special pointer called start pointer always pointing to the first node of the 

list. Circular linked lists are frequently used instead of ordinary linked list because many 

operations are much easier to implement. In circular linked list no null pointers are used, 

hence all pointers contain valid address. 

 

A circular single linked list is shown in figure 3.6.1. 
 

Figure 3.6.1. Circular Single Linked List 
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The basic operations in a circular single linked list are: 

 

• Creation. 

• Insertion. 

• Deletion. 

• Traversing. 

 

Creating a circular single Linked List with ‘n’ number of nodes: 

 

The following steps are to be followed to create ‗n‘ number of nodes: 

 

10. Get the new node using getnode(). 

newnode = getnode(); 

11. If the list is empty, assign new node as start. 

start = newnode; 

12. If the list is not empty, follow the steps given below: 

 

temp = start; 

while(temp -> next != NULL) 
temp = temp -> next; 

temp -> next = newnode; 

 

• Repeat the above steps ‗n‘ times. 

 

• newnode -> next = start; 
 

The function createlist(), is used to create ‗n‘ number of nodes: 

 

Inserting a node at the beginning: 

 

The following steps are to be followed to insert a new node at the beginning of the 

circular list: 

 

• Get the new node using getnode(). 

newnode = getnode(); 

• If the list is empty, assign new node as start. 

 
start = newnode; newnode 

-> next = start; 

• If the list is not empty, follow the steps given below: 

last = start; 

while(last -> next != start) 

last = last -> next; 

newnode -> next = 

start; start = newnode; 

last -> next = start; 
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The function cll_insert_beg(), is used for inserting a node at the beginning. Figure 3.6.2 

shows inserting a node into the circular single linked list at the beginning. 
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Figure 3.6.2. Inserting a node at the beginning 

 

Inserting a node at the end: 

 

The following steps are followed to insert a new node at the end of the list: 

 

• Get the new node using getnode(). 

newnode = getnode(); 

• If the list is empty, assign new node as start. 

 

start = newnode; newnode 

-> next = start; 

• If the list is not empty follow the steps given below: 

temp = start; 

while(temp -> next != start) 

temp = temp -> next; 

temp -> next = newnode; 
newnode -> next = start; 

 

The function cll_insert_end(), is used for inserting a node at the end. 

 

Figure 3.6.3 shows inserting a node into the circular single linked list at the end. 

 

Figure 3.6.3 Inserting a node at the end. 
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Deleting a node at the beginning: 

 

The following steps are followed, to delete a node at the beginning of the list: 

 

4.8.1. If the list is empty, display a message ‗Empty List‘. 

4.8.2. If the list is not empty, follow the steps given below: 

last = temp = start; 

while(last -> next != start) 
last = last -> next; 

start = start -> next; 
last -> next = start; 

 

4.8.2. After deleting the node, if the list is empty then start = NULL. 

 
The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4 

shows deleting a node at the beginning of a circular single linked list. 
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Figure 3.6.4. Deleting a node at beginning. 

 

 
Deleting a node at the end: 

 

The following steps are followed to delete a node at the end of the list: 

 

# If the list is empty, display a message ‗Empty List‘. 

 

# If the list is not empty, follow the steps given below: 

 
temp = start; 

prev = start; 

while(temp -> next != start) 

{ 
prev = temp; 

temp = temp -> next; 

} 

prev -> next = start; 

 

4.9. After deleting the node, if the list is empty then start = NULL. 
 

The function cll_delete_last(), is used for deleting the last node in the list. 



 

Figure 3.6.5 shows deleting a node at the end of a circular single linked list. 

 

Figure 3.6.5. Deleting a node at the end. 

 
 

Traversing a circular single linked list from left to right: 

 

The following steps are followed, to traverse a list from left to right: 

 

• If list is empty then display ‗Empty List‘ message. 

• If the list is not empty, follow the steps given below: 

temp = start; 

do 
{ 

printf("%d ", temp -> data); 
temp = temp -> next; 

} while(temp != start); 

 

 
• Source Code for Circular Single Linked List: 

 
include <stdio.h> 
include <conio.h> 

include <stdlib.h> 
 

struct cslinklist 
{ 

int data; 

struct cslinklist *next; 

}; 
 

typedef struct cslinklist node; 

node *start = NULL; 

int nodectr; 

 

node* getnode() 
{ 

node * newnode; 
newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 
newnode -> next = NULL; return 
newnode; 

} 
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int menu() 

{ 

int ch; 
clrscr(); 
printf("\n 1. Create a list "); 

printf("\n\n ------------------------- "); 

printf("\n 2. Insert a node at beginning "); 
printf("\n 3. Insert a node at end"); 
printf("\n 4. Insert a node at middle"); 
printf("\n\n  "); 
printf("\n 5. Delete a node from beginning"); 
printf("\n 6. Delete a node from Last"); 

printf("\n 7. Delete a node from Middle"); 
printf("\n\n  "); 
printf("\n 8. Display the list"); 
printf("\n 9. Exit"); 

printf("\n\n  "); 

printf("\n Enter your choice: "); 

scanf("%d", &ch); 
return ch; 

} 
 

void createlist(int n) 
{ 

int i; 

node *newnode; 
node *temp; 
nodectr = n; 

for(i = 0; i < n ; i++) 
{ 

newnode = getnode(); 
if(start == NULL) 
{ 

 

} 

else 
{ 

 

 

 
} 

} 

start = newnode; 

 

 
temp = start; 
while(temp -> next != NULL) 

temp = temp -> next; 

temp -> next = newnode; 

newnode ->next = start; /* last node is pointing to starting node */ 

} 
 

void display() 
{ 

node *temp; 

temp = start; 

printf("\n The contents of List (Left to Right): "); 

if(start == NULL ) 
printf("\n Empty List"); 

else 
{ 

do 

{ 

 
 

 
printf("\t %d ", temp -> data); 
temp = temp -> next; 

} while(temp != 
start); printf(" X "); 

} 

} 



 

void cll_insert_beg() 

{ 

node *newnode, *last; 
newnode = getnode(); 
if(start == NULL) 
{ 

 

} 

else 

{ 

 
 

 
 
 

} 

start = newnode; newnode 

-> next = start; 

 

 
 

last = start; 
while(last -> next != start) 

last = last -> next; 

newnode -> next = 
start; start = newnode; 
last -> next = start; 

printf("\n Node inserted at beginning.."); 
nodectr++; 

} 
 

void cll_insert_end() 

{ 
node *newnode, *temp; 

newnode = getnode(); 

if(start == NULL ) 

{ 

 

} 

else 

{ 

 
 

 

 
} 

start = newnode; newnode 

-> next = start; 

 

 

temp = start; 
while(temp -> next != start) 

temp = temp -> next; 

temp -> next = newnode; 
newnode -> next = start; 

printf("\n Node inserted at end.."); 
nodectr++; 

} 
 

void cll_insert_mid() 
{ 

node *newnode, *temp, *prev; 
int i, pos ; 

newnode = getnode(); printf("\n 
Enter the position: "); 
scanf("%d", &pos); 
if(pos > 1 && pos < nodectr) 

{ 
temp = 

start; prev = 
temp; i = 1; 
while(i < pos) 
{ 

prev = temp; 
temp = temp -> 
next; i++; 

} 

prev -> next = newnode; 

newnode -> next = temp; 



 

 
 

} 

else 

{ 
 

} 

} 

nodectr++; 

printf("\n Node inserted at middle.."); 

 

 
printf("position %d of list is not a middle position ", pos); 

 

void cll_delete_beg() 

{ 

node *temp, *last; 
if(start == NULL) 
{ 

 

 
} 

else 

{ 

 
 

 
 
 

 
 

 
} 

} 

printf("\n No nodes 
exist.."); getch(); 

return ; 

 

 
last = temp = start; 
while(last -> next != start) 

last = last -> next; 
start = start -> next; 

last -> next = start; 
free(temp); 
nodectr--; 
printf("\n Node deleted.."); 

if(nodectr == 0) 

start = NULL; 

 

void cll_delete_last() 

{ 

node *temp,*prev; 
if(start == NULL) 
{ 

 

 
} 
else 

{ 

printf("\n No nodes 
exist.."); getch(); 
return ; 

 

 
temp = start; 

prev = start; 

while(temp -> next != start) 
{ 

prev = temp; 
temp = temp -> next; 

} 

prev -> next = start; 
free(temp); nodectr- 
-; 
if(nodectr == 0) start 

= NULL; 

printf("\n Node deleted.."); 
} 

} 



 

void cll_delete_mid() 

{ 
int i = 0, pos; 

node *temp, *prev; 

 

if(start == NULL) 
{ 

 

 
} 

else 

{ 

printf("\n No nodes 

exist.."); getch(); 
return ; 

 

 
printf("\n Which node to delete: "); 
scanf("%d", &pos); 
if(pos > nodectr) 

{ 

printf("\nThis node does not 
exist"); getch(); 
return; 

} 

if(pos > 1 && pos < nodectr) 
{ 

temp=start; 
prev = start; 
i = 0; 
while(i < pos - 1) 
{ 

prev = temp; 

temp = temp -> next ; 
i++; 

} 

 

 

 
} 
else 

{ 

 

} 
} 

} 

prev -> next = temp -> next; 
free(temp); 
nodectr--; 

printf("\n Node Deleted.."); 

 

 
printf("\n It is not a middle position.."); 
getch(); 

 

void main(void) 
{ 

int result; 
int ch, n; 
clrscr(); 
while(1) 

{ 
ch = menu(); 
switch(ch) 
{ 

case 1 : 
if(start == NULL) 
{ 

printf("\n Enter Number of nodes to create: "); 

scanf("%d", &n); 
createlist(n); 
printf("\nList created.."); 

} 



 

else 

 

break; 
case 2 : 

 
printf("\n List is already Exist.."); 

cll_insert_beg(); 
break; 

case 3 : 

cll_insert_end(); 
break; 

case 4 : 

cll_insert_mid(); 
break; 

case 5 : 

cll_delete_beg(); 
break; 

case 6 : cll_delete_last(); 

break; 
 

case 7 : 
cll_delete_mid(); 
break; 

case 8 : 

display(); 
break; 

case 9 : 
exit(0); 

} 
getch(); 

} 

} 

 

 

Circular Double Linked List: 

 

A circular double linked list has both successor pointer and predecessor pointer in circular 

manner. The objective behind considering circular double linked list is to simplify the 

insertion and deletion operations performed on double linked list. In circular double linked 

list the right link of the right most node points back to the start node and left link of the 

first node points to the last node. A circular double linked list is shown in figure 3.8.1. 

 

Figure 3.8.1. Circular Double Linked List 

 
The basic operations in a circular double linked list are: 

 
• Creation. 
• Insertion. 

• Deletion. 

• Traversing. 
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Creating a Circular Double Linked List with ‘n’ number of nodes: 

 

The following steps are to be followed to create ‗n‘ number of nodes: 

 

• Get the new node using getnode(). 
newnode = getnode(); 

 

• If the list is empty, then do the following 

start = newnode; 

newnode -> left = start; 
newnode ->right = start; 

 

• If the list is not empty, follow the steps given below: 

newnode -> left = start -> left; 
newnode -> right = start; start 

-> left->right = newnode; start 

-> left = newnode; 

 

• Repeat the above steps ‗n‘ times. 

 

The function cdll_createlist(), is used to create ‗n‘ number of nodes: 

 

Inserting a node at the beginning: 

 

The following steps are to be followed to insert a new node at the beginning of the list: 

 

• Get the new node using getnode(). 

newnode=getnode(); 

 

• If the list is empty, then 

start = newnode; 

newnode -> left = start; 
newnode -> right = start; 

 

• If the list is not empty, follow the steps given below: 

newnode -> left = start -> left; 

newnode -> right = start; 

start -> left -> right = newnode; 
start -> left = newnode; 

start = newnode; 

 
The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure 

3.8.2 shows inserting a node into the circular double linked list at the beginning. 
 

Figure 3.8.2. Inserting a node at the beginning 
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Inserting a node at the end: 

 

The following steps are followed to insert a new node at the end of the list: 

 
• Get the new node using getnode() 

newnode=getnode(); 

 

• If the list is empty, then 

start = newnode; 

newnode -> left = start; 
newnode -> right = start; 

 

• If the list is not empty follow the steps given below: 

newnode -> left = start -> left; 
newnode -> right = start; 

start -> left -> right = newnode; 

start -> left = newnode; 

 

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3 

shows inserting a node into the circular linked list at the end. 
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Figure 3.8.3. Inserting a node at the end 

 

Inserting a node at an intermediate position: 

 
The following steps are followed, to insert a new node in an intermediate position in the 
list: 

 

• Get the new node using getnode(). 

newnode=getnode(); 

 

• Ensure that the specified position is in between first node and last node. If 

not, specified position is invalid. This is done by countnode() function. 

 

• Store the starting address (which is in start pointer) in temp. Then traverse 

the temp pointer upto the specified position. 

 

• After reaching the specified position, follow the steps given below: 

newnode -> left = temp; newnode 

-> right = temp -> right; temp -> 

right -> left = newnode; temp -> 

right = newnode; nodectr++; 



 

The function cdll_insert_mid(), is used for inserting a node in the intermediate position. 

Figure 3.8.4 shows inserting a node into the circular double linked list at a specified 

intermediate position other than beginning and end. 

 

Figure 3.8.4. Inserting a node at an intermediate position 

 

 
Deleting a node at the beginning: 

 

The following steps are followed, to delete a node at the beginning of the list: 

 

• If list is empty then display ‗Empty List‘ message. 

• If the list is not empty, follow the steps given below: 

temp = start; 

start = start -> right; 

temp -> left -> right = start; 

start -> left = temp -> left; 
 

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure 

3.8.5 shows deleting a node at the beginning of a circular double linked list. 

 

Figure 3.8.5. Deleting a node at beginning 

 
Deleting a node at the end: 

 

The following steps are followed to delete a node at the end of the list: 

 

• If list is empty then display ‗Empty List‘ message 
 

• If the list is not empty, follow the steps given below: 
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temp = start; 

while(temp -> right != start) 

{ 
temp = temp -> right; 

} 

temp -> left -> right = temp -> right; 
temp -> right -> left = temp -> left; 

 

The function cdll_delete_last(), is used for deleting the last node in the list. Figure 3.8.6 

shows deleting a node at the end of a circular double linked list. 

 

Figure 3.8.6. Deleting a node at the end 

 
Deleting a node at Intermediate position: 

 

The following steps are followed, to delete a node from an intermediate position in the 
list (List must contain more than two node). 

 

• If list is empty then display ‗Empty List‘ message. 

 

• If the list is not empty, follow the steps given below: 
 

• Get the position of the node to delete. 

 
• Ensure that the specified position is in between first node and last 

node. If not, specified position is invalid. 

• Then perform the following steps: 

if(pos > 1 && pos < nodectr) 

{ 

 

temp = start; 

i = 1; 
while(i < pos) 

{ 

temp = temp -> right ; 

i++; 
} 

temp -> right -> left = temp -> left; 

temp -> left -> right = temp -> right; 

free(temp); 

printf("\n node deleted.."); 
nodectr--; 

} 
 

The function cdll_delete_mid(), is used for deleting the intermediate node in the list. 
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Figure 3.8.7 shows deleting a node at a specified intermediate position other than 

beginning and end from a circular double linked list. 

Figure 3.8.7. Deleting a node at an intermediate position 

 
Traversing a circular double linked list from left to right: 

 

The following steps are followed, to traverse a list from left to right: 

 

E. If list is empty then display ‗Empty List‘ message. 

 

F. If the list is not empty, follow the steps given below: 

temp = start; 

Print temp -> data; 

temp = temp -> right; 

while(temp != start) 
{ 

print temp -> data; 

temp = temp -> right; 
} 

 

The function cdll_display_left _right(), is used for traversing from left to right. 

 

Traversing a circular double linked list from right to left: 

 

The following steps are followed, to traverse a list from right to left: 

 

E. If list is empty then display ‗Empty List‘ message. 

 
F. If the list is not empty, follow the steps given below: 

temp = start; 
do 

{ 

temp = temp -> left; 
print temp -> data; 

} while(temp != start); 

 

The function cdll_display_right_left(), is used for traversing from right to left. 

 

Source Code for Circular Double Linked List: 

 
include <stdio.h> 
include <stdlib.h> 
include <conio.h> 
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struct cdlinklist 

{ 
struct cdlinklist 
*left; int data; 
struct cdlinklist *right; 

}; 
 

typedef struct cdlinklist 

node; node *start = NULL; 
int nodectr; 

 

node* getnode() 
{ 

node * newnode; 
newnode = (node *) malloc(sizeof(node)); 

printf("\n Enter data: "); 

scanf("%d", &newnode -> data); 

newnode -> left = NULL; 
newnode -> right = NULL; 
return newnode; 

} 
 

int menu() 
{ 

int ch; 

clrscr(); 
printf("\n 1. Create "); 

printf("\n\n   "); 

printf("\n 2. Insert a node at Beginning"); 
printf("\n 3. Insert a node at End"); 

printf("\n 4. Insert a node at Middle"); 

printf("\n\n  "); 

printf("\n 5. Delete a node from Beginning"); 
printf("\n 6. Delete a node from End"); 

printf("\n 7. Delete a node from Middle"); 
printf("\n\n  "); 
printf("\n 8. Display the list from Left to Right"); 
printf("\n 9. Display the list from Right to Left"); 
printf("\n 10.Exit"); 

printf("\n\n Enter your choice: "); 
scanf("%d", &ch); 
return ch; 

} 
 

void cdll_createlist(int n) 

{ 

int i; 
node *newnode, *temp; 

if(start == NULL) 

{ 
nodectr = n; 

for(i = 0; i < n; i++) 

{ 
newnode = getnode(); 

if(start == NULL) 

{ 

 

 
} 
else 
{ 

start = newnode; 

newnode -> left = start; 

newnode ->right = start; 

 

 

newnode -> left = start -> left; 



 

 
 
 

} 

} 
else 

newnode -> right = start; start 

-> left->right = newnode; 
start -> left = newnode; 

} 

printf("\n List already exists.."); 

} 
 

void cdll_display_left_right() 

{ 
node *temp; 

temp = start; 

if(start == NULL) 

printf("\n Empty List"); 
else 

{ 
 

printf("\n The contents of List: 
"); printf(" %d ", temp -> data); 
temp = temp -> right; 
while(temp != start) 
{ 

printf(" %d ", temp -> data); 
temp = temp -> right; 

} 

} 

} 
 

void cdll_display_right_left() 

{ 
node *temp; 

temp = start; 

if(start == NULL) 

printf("\n Empty List"); 

else 

{ 
 

printf("\n The contents of List: 
"); do 
{ 

temp = temp -> left; 

printf("\t%d", temp -> data); 

} while(temp != start); 
} 

} 
 

void cdll_insert_beg() 
{ 

node *newnode; 

newnode = getnode(); 

nodectr++; 

if(start == NULL) 

{ 

 

 
} 

else 

{ 

start = newnode; 
newnode -> left = start; 
newnode -> right = start; 

 

 
newnode -> left = start -> left; 
newnode -> right = start; 

start -> left -> right = newnode; 
start -> left = newnode; 



 

start = newnode; 

} 

} 
 

void cdll_insert_end() 

{ 

node *newnode,*temp; 
newnode = getnode(); 
nodectr++; 
if(start == NULL) 

{ 

 

 
} 
else 

{ 

 

 

 
} 

start = newnode; 
newnode -> left = start; 
newnode -> right = start; 

 

 
newnode -> left = start -> left; 
newnode -> right = start; 

start -> left -> right = newnode; 
start -> left = newnode; 

printf("\n Node Inserted at End"); 

} 
 

void cdll_insert_mid() 
{ 

node *newnode, *temp, *prev; 
int pos, ctr = 1; 

newnode = getnode(); 
printf("\n Enter the position: "); 
scanf("%d", &pos); 
if(pos - nodectr >= 2) 

{ 

printf("\n Position is out of range.."); 
return; 

} 
if(pos > 1 && pos <= nodectr) 

{ 
temp = start; 

while(ctr < pos - 1) 

{ 

temp = temp -> right; 
ctr++; 

} 

 

 
 

 
 

} 

else 

 

} 

} 

newnode -> left = temp; newnode 

-> right = temp -> right; temp -> 

right -> left = newnode; temp -> 
right = newnode; nodectr++; 

 

printf("\n Node Inserted at Middle.. "); 

 

printf("position %d of list is not a middle position", pos); 

 

void cdll_delete_beg() 
{ 

node *temp; 

if(start == NULL) 

{ 

printf("\n No nodes exist.."); 



 

 
 

} 

else 

{ 

getch(); 

return ; 

 

 

nodectr--; 
if(nodectr == 0) 
{ 

 

} 
else 

{ 

 
 
 

 
} 

free(start); 

start = NULL; 

 

 

temp = start; 
start = start -> right; 

temp -> left -> right = start; 
start -> left = temp -> left; 

free(temp); 

printf("\n Node deleted at Beginning.."); 
} 

} 
 

void cdll_delete_last() 

{ 
node *temp; 

if(start == NULL) 

{ 

 

 
} 
else 

{ 

printf("\n No nodes 
exist.."); getch(); 
return; 

 

 
nodectr--; 
if(nodectr == 0) 

{ 

 

} 
else 

{ 

 
 

 
 
 

} 

free(start); 

start = NULL; 

 

 

temp = start; 

while(temp -> right != start) 
temp = temp -> right; 

temp -> left -> right = temp -> right; 
temp -> right -> left = temp -> left; 

free(temp); 

printf("\n Node deleted from end "); 
} 

} 
 

void cdll_delete_mid() 
{ 

int ctr = 1, pos; 
node *temp; 

if( start == NULL) 
{ 

printf("\n No nodes 
exist.."); getch(); 

return; 

} 



 

else 

{ 

 
 

printf("\n Which node to delete: "); 

scanf("%d", &pos); 
if(pos > nodectr) 

{ 
printf("\nThis node does not 
exist"); getch(); 
return; 

} 
if(pos > 1 && pos < nodectr) 

{ 
temp = start; 

while(ctr < pos) 

{ 

temp = temp -> right ; 
ctr++; 

} 

 
 

 

 
} 

else 

{ 

 

} 

} 
} 

temp -> right -> left = temp -> left; 
temp -> left -> right = temp -> right; 
free(temp); 

printf("\n node deleted.."); 
nodectr--; 

 

 
printf("\n It is not a middle position.."); 
getch(); 

 

void main(void) 

{ 

int ch,n; 
clrscr(); 
while(1) 

{ 

ch = menu(); 
switch( ch) 
{ 

case 1 : 

printf("\n Enter Number of nodes to create: "); 
scanf("%d", &n); 
cdll_createlist(n); 
printf("\n List 
created.."); break; 

case 2 : cdll_insert_beg(); 

break; 

 
case 3 : cdll_insert_end(); 

break; 

 
case 4 : 

cdll_insert_mid(); 
break; 

case 5 : cdll_delete_beg(); 

break; 

 

case 6 : 

cdll_delete_last(); 
break; 



 

case 7 : 

cdll_delete_mid(); 

break; 
case 8 : 

cdll_display_left_right(); 
break; 

case 9 : 

cdll_display_right_left(); 
break; 

case 10: 
exit(0); 

} 

getch(); 
} 

} 

 

 

3.9. Comparison of Linked List Variations: 

 
The major disadvantage of doubly linked lists (over singly linked lists) is that they require 
more space (every node has two pointer fields instead of one). Also, the code to 
manipulate doubly linked lists needs to maintain the prev fields as well as the next fields; 
the more fields that have to be maintained, the more chance there is for errors. 

 

The major advantage of doubly linked lists is that they make some operations (like the 

removal of a given node, or a right-to-left traversal of the list) more efficient. 

 

The major advantage of circular lists (over non-circular lists) is that they eliminate some 

extra-case code for some operations (like deleting last node). Also, some applications 

lead naturally to circular list representations. For example, a computer network might 

best be modeled using a circular list. 

 
 

3.10. Polynomials: 

 

A polynomial is of the form: ∑
n 

ci x 
i
 

i =0 

 

Where, ci is the coefficient of the i
th 

term and 

n is the degree of the polynomial 

Some examples are: 

5x
2 

+ 3x + 1 

12x
3 

– 4x 

5x
4 

– 8x
3 

+ 2x
2 

+ 4x
1 

+ 9x
0
 

It is not necessary to write terms of the polynomials in decreasing order of degree. In 

other words the two polynomials 1 + x and x + 1 are equivalent. 

 

The computer implementation requires implementing polynomials as a list of pairs of 

coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial 

will be represented as a list of structures. A linked list structure that represents 

polynomials 5x
4 

– 8x
3 

+ 2x
2 

+ 4x
1 

+ 9x
0 

illustrates in figure 3.10.1. 



 

 

Figure 3.10.1. Single Linked List for the polynomial F(x) = 5x
4 

– 8x
3 

+ 2x
2 

+ 4x
1 

+ 9x
0
 

 
Source code for polynomial creation with help of linked list: 

 
#include <conio.h> 
#include <stdio.h> 
#include <malloc.h> 

 
struct link 

{ 
float coef; 

int expo; 

struct link *next; 

}; 
 

typedef struct link node; 
node * getnode() 
{ 

node *tmp; 

tmp =(node *) malloc( sizeof(node) ); 
printf("\n Enter Coefficient : "); 
fflush(stdin); scanf("%f",&tmp- 

>coef); 

printf("\n Enter Exponent : "); 
fflush(stdin); 
scanf("%d",&tmp->expo); 
tmp->next = NULL; 
return tmp; 

} 
node * create_poly (node *p ) 
{ 

char ch; 
node *temp,*newnode; 
while( 1 ) 
{ 

printf ("\n Do U Want polynomial node (y/n): 
"); ch = getche(); 
if(ch == 'n') 

break; 
newnode = getnode(); 

if( p == NULL ) 

p = newnode; 
else 

{ 

 

 

 
} 

 

} 

 

temp = p; while(temp- 
>next != NULL ) 

temp = temp->next; 
temp->next = newnode; 

return p; 
} 

 

500 
Coefficient Exponent 

5 4 100 -8 3  200 2 2  300 4 1 400 9 0  

500 100 200 300 400 



 

void display (node *p) 

{ 

node *t = p; 
while (t != NULL) 
{ 

 

 
} 

} 
 

void main() 

{ 

printf("+ %.2f", t -> coef); 

printf("X^ %d", t -> expo); 
t =t -> next; 

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL; 
clrscr(); 

printf("\nEnter First Polynomial..(in ascending-order of exponent)"); 

poly1 = create_poly (poly1); 
printf("\nEnter Second Polynomial..(in ascending-order of exponent)"); 
poly2 = create_poly (poly2); 
clrscr(); 

printf("\n Enter Polynomial 1: 
"); display (poly1); 
printf("\n Enter Polynomial 2: 
"); display (poly2); 
getch(); 

} 

 

 

Addition of Polynomials: 

 

To add two polynomials we need to scan them once. If we find terms with the same 

exponent in the two polynomials, then we add the coefficients; otherwise, we copy the 

term of larger exponent into the sum and go on. When we reach at the end of one of the 

polynomial, then remaining part of the other is copied into the sum. 

 

To add two polynomials follow the following steps: 

 
• Read two polynomials. 

• Add them. 

• Display the resultant polynomial. 

 

Source code for polynomial addition with help of linked list: 

 
#include <conio.h> 
#include <stdio.h> 

#include <malloc.h> 

 
struct link 
{ 

float coef; 

int expo; 

struct link *next; 

}; 
 

typedef struct link node; 

 

node * getnode() 
{ 

node *tmp; 
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tmp =(node *) malloc( sizeof(node) ); 

printf("\n Enter Coefficient : "); 
fflush(stdin); scanf("%f",&tmp- 
>coef); 

printf("\n Enter Exponent : "); 
fflush(stdin); 
scanf("%d",&tmp->expo); 
tmp->next = NULL; 
return tmp; 

} 
 

node * create_poly (node *p ) 

{ 
char ch; 

node *temp,*newnode; 
while( 1 ) 
{ 

printf ("\n Do U Want polynomial node (y/n): 
"); ch = getche(); 
if(ch == 'n') 

break; 
newnode = getnode(); 

if( p == NULL ) 

p = newnode; 
else 

{ 

 

 

 
} 

 

} 

 

temp = p; while(temp- 
>next != NULL ) 

temp = temp->next; 
temp->next = newnode; 

return p; 

} 
 

void display (node *p) 

{ 

node *t = p; 
while (t != NULL) 
{ 

printf("+ %.2f", t -> coef); 

printf("X^ %d", t -> expo); 

t = t -> next; 
} 

} 
 

void add_poly(node *p1,node *p2) 
{ 

 
node *newnode; 
while(1) 
{ 

if( p1 == NULL || p2 == NULL 
) break; 

if(p1->expo == p2->expo ) 
{ 

 

} 
else 

{ 

printf("+ %.2f X ^%d",p1->coef+p2->coef,p1->expo); 

p1 = p1->next; p2 = p2->next; 

 

 
if(p1->expo < p2->expo) 



 

{ 

 

} 
else 

{ 

 

} 
} 

} 

 
printf("+ %.2f X ^%d",p1->coef,p1->expo); 
p1 = p1->next; 

 

 
printf(" + %.2f X ^%d",p2->coef,p2- 

>expo); p2 = p2->next; 

while(p1 != NULL ) 

{ 
printf("+ %.2f X ^%d",p1->coef,p1->expo); 
p1 = p1->next; 

} 
while(p2 != NULL ) 

{ 
 

printf("+ %.2f X ^%d",p2->coef,p2->expo); 
p2 = p2->next; 

} 

} 
 

void main() 

{ 

 

 
 

 
 
 

 
 

 
 
 

 
} 

 

 
node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL; 
clrscr(); 

printf("\nEnter First Polynomial..(in ascending-order of exponent)"); 
poly1 = create_poly (poly1); 
printf("\nEnter Second Polynomial..(in ascending-order of exponent)"); 

poly2 = create_poly (poly2); 
clrscr(); 

printf("\n Enter Polynomial 1: 
"); display (poly1); 

printf("\n Enter Polynomial 2: 
"); display (poly2); 
printf( "\n Resultant Polynomial : 
"); add_poly(poly1, poly2); 
display (poly3); 
getch(); 

 

Exercise 
 

1. Write a ―C‖ functions to split a given list of integers represented by a single linked 

list into two lists in the following way. Let the list be L = (l0, l1, ….., ln). The 

resultant lists would be R1 = (l0, l2, l4, …..) and R2 = (l1, l3, l5, …..). 

2. Write a ―C‖ function to insert a node ―t‖ before a node pointed to by ―X‖ in a 

single linked list ―L‖. 

 
3. Write a ―C‖ function to delete a node pointed to by ―p‖ from a single linked list 

―L‖. 

4. Suppose that an ordered list L = (l0, l1, …..,ln) is represented by a single linked 

list. It is required to append the list L = (ln, l0, l1, ….., ln) after another ordered 

list M represented by a single linked list. 



 

5. Implement the following function as a new function for the linked list 

toolkit. 

 

Precondition: head_ptr points to the start of a linked list. The list might 
be empty or it might be non-empty. 

 

Postcondition: The return value is the number of occurrences of 42 in 

the data field of a node on the linked list. The list itself is unchanged. 

 

6. Implement the following function as a new function for the linked list 

toolkit. 

 
Precondition: head_ptr points to the start of a linked list. The list might 
be empty or it might be non-empty. 

 

Postcondition: The return value is true if the list has at least one 

occurrence of the number 42 in the data part of a node. 

 

7. Implement the following function as a new function for the linked list 

toolkit. 

 
Precondition: head_ptr points to the start of a linked list. The list might 
be empty or it might be non-empty. 

 

Postcondition: The return value is the sum of all the data components of 

all the nodes. NOTE: If the list is empty, the function returns 0. 

 

8. Write a ―C‖ function to concatenate two circular linked lists producing another 

circular linked list. 

 
9. Write ―C‖ functions to compute the following operations on polynomials 

represented as singly connected linked list of nonzero terms. 

 

1. Evaluation of a polynomial 

2. Multiplication of two polynomials. 

 
10. Write a ―C‖ function to represent a sparse matrix having ―m‖ rows and ―n‖ 

columns using linked list. 

 

11. Write a ―C‖ function to print a sparse matrix, each row in one line of output and 

properly formatted, with zero being printed in place of zero elements. 
 

12. Write ―C‖ functions to: 
 

1. Add two m X n sparse matrices and 

2. Multiply two m X n sparse matrices. 

 

Where all sparse matrices are to be represented by linked lists. 

 

13. Consider representing a linked list of integers using arrays. Write a ―C‖ function 

to delete the i
th 

node from the list. 



 

Multiple Choice Questions 

 
1. Which among the following is a linear data structure: [ D ] 

A. Queue C. Linked List 

B. Stack D. all the above 

2. Which among the following is a dynamic data structure: [ A ] 

A. Double Linked List C. Stack 

B. Queue D. all the above 

3. The link field in a node contains: [ A ] 

A. address of the next node C. data of next node 

B. data of previous node D. data of current node 

4. Memory is allocated dynamically to a data structure during execution [ D ] 

by -------- function. 
A. malloc() C. realloc() 

B. Calloc() D. all the above 

5. How many null pointer/s exist in a circular double linked list? [ D ] 

A. 1 C. 3 

B. 2 D. 0 

 
6. Suppose that p is a pointer variable that contains the NULL pointer. 

What happens if your program tries to read or write *p? 
A. A syntax error always occurs at compilation time. 
B. A run-time error always occurs when *p is evaluated. 

C. A run-time error always occurs when the program finishes. 

D. The results are unpredictable. 

 

7. What kind of list is best to answer questions such as: "What is the 

item at position n?" 
A. Lists implemented with an array. 

B. Doubly-linked lists. 

C. Singly-linked lists. 

D. Doubly-linked or singly-linked lists are equally best. 

[ ] 

 
 

 
 

 
[ A ] 

 

8. In a single linked list which operation depends on the length of the list. [ A ] 

A. Delete the last element of the list 

B. Add an element before the first element of the list 

C. Delete the first element of the list 

D. Interchange the first two elements of the list 

9. A double linked list is declared as follows: [ A ] struct dllist 
 

{ 

struct dllist *fwd, *bwd; 
int data; 

} 

Where fwd and bwd represents forward and backward links to adjacent 

elements of the list. Which among the following segments of code 

deletes the element pointed to by X from the double linked list, if it is 

assumed that X points to neither the first nor last element of the list? 



 

A. X -> bwd -> fwd = X -> fwd; 

X -> fwd -> bwd = X -> bwd 

B. X -> bwd -> fwd = X -> bwd; 

X -> fwd -> bwd = X -> fwd 

C. X -> bwd -> bwd = X -> fwd; 

X -> fwd -> fwd = X -> bwd 

D. X -> bwd -> bwd = X -> bwd; 

X -> fwd -> fwd = X -> fwd 

10. Which among the following segment of code deletes the element [ B ] 

pointed to by X from the double linked list, if it is assumed that X 

points to the first element of the list and start pointer points to 
beginning of the list? 

A. X -> bwd = X -> fwd; 

X -> fwd = X -> bwd 

B. start = X -> fwd; 

start -> bwd = NULL; 

C. start = X -> fwd; 

X -> fwd = NULL 

D. X -> bwd -> bwd = X -> bwd; 

X -> fwd -> fwd = X -> fwd 

 

11. Which among the following segment of code deletes the element [ C ] 

pointed to by X from the double linked list, if it is assumed that X 
points to the last element of the list? 

A. X -> fwd -> bwd = NULL; 

B. X -> bwd -> fwd = X -> bwd; 

C. X -> bwd -> fwd = NULL; 

D. X -> fwd -> bwd = X -> bwd; 

 

12. Which among the following segment of code counts the number of [ A ] 

elements in the double linked list, if it is assumed that X points to the 

first element of the list and ctr is the variable which counts the number 

of elements in the list? 

A. for (ctr=1; X != NULL; ctr++) 

X = X -> fwd; 

B. for (ctr=1; X != NULL; ctr++) 

X = X -> bwd; 

C. for (ctr=1; X -> fwd != NULL; ctr++) 

X = X -> fwd; 

D. for (ctr=1; X -> bwd != NULL; ctr++) 

X = X -> bwd; 
 

13. Which among the following segment of code counts the number of [ B ] 

elements in the double linked list, if it is assumed that X points to the 

last element of the list and ctr is the variable which counts the number 

of elements in the list? 

A. for (ctr=1; X != NULL; ctr++) 

X = X -> fwd; 

B. for (ctr=1; X != NULL; ctr++) 
X = X -> bwd; 

C. for (ctr=1; X -> fwd != NULL; ctr++) 

X = X -> fwd; 

D. for (ctr=1; X -> bwd != NULL; ctr++) 

X = X -> bwd; 



 

14. Which among the following segment of code inserts a new node [ B ] 

pointed by X to be inserted at the beginning of the double linked list. 
The start pointer points to beginning of the list? 

 

A. X -> bwd = X -> fwd; 

X -> fwd = X -> bwd; 

B. X -> fwd = start; 

start -> bwd = X; 

start = X; 

C. X -> bwd = X -> fwd; 

X -> fwd = X -> bwd; 

start = X; 

D. X -> bwd -> bwd = X -> bwd; 

X -> fwd -> fwd = X -> fwd 

 

15. Which among the following segments of inserts a new node pointed by [ C ]  

X to be inserted at the end of the double linked list. The start and last 

pointer points to beginning and end of the list respectively? 

 

A. X -> bwd = X -> fwd; 

X -> fwd = X -> bwd 

B. X -> fwd = start; 

start -> bwd = X; 

C. last -> fwd = X; 

X -> bwd = last; 

D. X -> bwd = X -> bwd; 

X -> fwd = last; 
 

16. Which among the following segments of inserts a new node pointed by [ D ] 

X to be inserted at any position (i.e neither first nor last) element of 

the double linked list? Assume temp pointer points to the previous 

position of new node. 

 

A. X -> bwd -> fwd = X -> fwd; 

X -> fwd -> bwd = X -> bwd 

B. X -> bwd -> fwd = X -> bwd; 

X -> fwd -> bwd = X -> fwd 
C. temp -> fwd = X; 

temp -> bwd = X -> fwd; 

X ->fwd = x 
X ->fwd->bwd = temp 

D. X -> bwd = temp; 

X -> fwd = temp -> fwd; 

temp ->fwd = X; 

X -> fwd -> bwd = X; 



 

17. A single linked list is declared as follows: [ A ] 

struct sllist 
{ 

struct sllist *next; 

int data; 
} 

Where next represents links to adjacent elements of the list. 

 

Which among the following segments of code deletes the element 

pointed to by X from the single linked list, if it is assumed that X 

points to neither the first nor last element of the list? prev pointer 

points to previous element. 

 

A. prev -> next = X -> next; 

free(X); 

B. X -> next = prev-> next; 

free(X); 

C. prev -> next = X -> next; 

free(prev); 

D. X -> next = prev -> next; 

free(prev); 

 

18. Which among the following segment of code deletes the element [ B ] 

pointed to by X from the single linked list, if it is assumed that X 

points to the first element of the list and start pointer points to 

beginning of the list? 

 

A. X = start -> next; 

free(X); 

B. start = X -> next; 

free(X); 

C. start = start -> next; 

free(start); 

D. X = X -> next; 

start = X; 

free(start); 

 

19. Which among the following segment of code deletes the element [ C ] 

pointed to by X from the single linked list, if it is assumed that X 

points to the last element of the list and prev pointer points to last but 

one element? 
 

A. prev -> next = NULL; 

free(prev); 

B. X -> next = NULL; 

free(X); 

C. prev -> next = NULL; 

free(X); 

D X -> next = prev; 

free(prev); 



 

20. Which among the following segment of code counts the number of [ A ] 

elements in the single linked list, if it is assumed that X points to the 

first element of the list and ctr is the variable which counts the number 

of elements in the list? 

 
A. for (ctr=1; X != NULL; ctr++) 

X = X -> next; 

B. for (ctr=1; X != NULL; ctr--) 

X = X -> next; 

C. for (ctr=1; X -> next != NULL; ctr++) 

X = X -> next; 

D. for (ctr=1; X -> next != NULL; ctr--) 

X = X -> next; 

 

21. Which among the following segment of code inserts a new node [ B ] 

pointed by X to be inserted at the beginning of the single linked list. 

The start pointer points to beginning of the list? 

 

A. start -> next = X; 

X = start; 

B. X -> next = start; 

start = X 

C. X -> next = start -> next; 

start = X 

D. X -> next = start; 

start = X -> next 
 

22. Which among the following segments of inserts a new node pointed by [ C ]  

X to be inserted at the end of the single linked list. The start and last 

pointer points to beginning and end of the list respectively? 

 

A. last -> next = X; 

X -> next = start; 

B. X -> next = last; 

last ->next = NULL; 

C. last -> next = X; 

X -> next = NULL; 

D. last -> next = X -> next; 

X -> next = NULL; 
 

23. Which among the following segments of inserts a new node pointed by  [  D ] 

X to be inserted at any position (i.e neither first nor last) element of 

the single linked list? Assume prev pointer points to the previous 

position of new node. 

 

A. X -> next = prev -> next; 

prev -> next = X -> next; 

B. X = prev -> next; 
prev -> next = X -> next; 

C. X -> next = prev; 

prev -> next = X; 

D. X -> next = prev -> next; 

prev -> next = X; 



 

24. A circular double linked list is declared as follows: [ A ] 

struct cdllist 
{ 

struct cdllist *fwd, *bwd; 

int data; 
} 

Where fwd and bwd represents forward and backward links to adjacent 

elements of the list. 

 

Which among the following segments of code deletes the element 

pointed to by X from the circular double linked list, if it is assumed 

that X points to neither the first nor last element of the list? 

 

A. X -> bwd -> fwd = X -> fwd; 

X -> fwd -> bwd = X -> bwd; 

B. X -> bwd -> fwd = X -> bwd; 

X -> fwd -> bwd = X -> fwd; 

C. X -> bwd -> bwd = X -> fwd; 

X -> fwd -> fwd = X -> bwd; 

D. X -> bwd -> bwd = X -> bwd; 

X -> fwd -> fwd = X -> fwd; 

 

25. Which among the following segment of code deletes the element [ D ] 

pointed to by X from the circular double linked list, if it is assumed 

that X points to the first element of the list and start pointer points to 

beginning of the list? 

 

A. start = start -> bwd; 

X -> bwd -> bwd = start; 

start -> bwd = X -> bwd; 
B. start = start -> fwd; 

X -> fwd -> fwd = start; 

start -> bwd = X -> fwd 

C. start = start -> bwd; 

X -> bwd -> fwd = X; 
start -> bwd = X -> bwd 

D. start = start -> fwd; 

X -> bwd -> fwd = start; 

start -> bwd = X -> bwd; 
 

26. Which among the following segment of code deletes the element [ B ] 

pointed to by X from the circular double linked list, if it is assumed 

that X points to the last element of the list and start pointer points to 

beginning of the list? 

 

A. X -> bwd -> fwd = X -> fwd; 

X -> fwd -> fwd= X -> bwd; 

B. X -> bwd -> fwd = X -> fwd; 

X -> fwd -> bwd = X -> bwd; 

C. X -> fwd -> fwd = X -> bwd; 

X -> fwd -> bwd= X -> fwd; 

D. X -> bwd -> bwd = X -> fwd; 

X -> bwd -> bwd = X -> bwd; 



 

27. Which among the following segment of code counts the number of [ A ] 

elements in the circular double linked list, if it is assumed that X and 

start points to the first element of the list and ctr is the variable which 

counts the number of elements in the list? 

A. for (ctr=1; X->fwd != start; ctr++) 

X = X -> fwd; 

B. for (ctr=1; X != NULL; ctr++) 

X = X -> bwd; 

C. for (ctr=1; X -> fwd != NULL; ctr++) 

X = X -> fwd; 

D. for (ctr=1; X -> bwd != NULL; ctr++) 

X = X -> bwd; 

 

28. Which among the following segment of code inserts a new node [ B ] 

pointed by X to be inserted at the beginning of the circular double 
linked list. The start pointer points to beginning of the list? 

A. X -> bwd = start; C. X -> fwd = start -> bwd; 

X -> fwd = start -> fwd; X -> bwd = start; 

start -> bwd-> fwd = X; start -> bwd-> fwd = X; 

start -> bwd = X; start -> bwd = X; 

start = X start = X 
 

B. X -> bwd = start ->  

bwd; X -> fwd = start; 

start -> bwd->  fwd  = 

X; start -> bwd = X; 

start = X 

D. X -> bwd = start ->  
bwd; X -> fwd = start; 
start -> fwd-> fwd = X; 
start -> fwd = X; 

X = start; 

 

29. Which among the following segment of code inserts a new node [ C ] 

pointed by X to be inserted at the end of the circular double linked list. 
The start pointer points to beginning of the list? 

A. X -> bwd = start; C. X -> bwd= start -> bwd; 

X -> fwd = start -> fwd; X-> fwd = start; 

start -> bwd -> fwd = X; start -> bwd -> fwd = X; 

start -> bwd = X; start -> bwd = X; 

start = X 

D. X -> bwd = start -> bwd; 
B. X -> bwd = start -> bwd; X -> fwd = start; 

X -> fwd = start; start -> fwd-> fwd = X; 

start -> bwd -> fwd = X; start -> fwd = X; 

start -> bwd = X; X = start; 

start = X 

 

30. Which among the following segments of inserts a new node pointed by [ D ] 

X to be inserted at any position (i.e neither first nor last) element of 

the circular double linked list? Assume temp pointer points to the 

previous position of new node. 

A. X -> bwd -> fwd = X -> fwd; C. temp -> fwd = X; 

X -> fwd -> bwd = X -> bwd; temp -> bwd = X -> fwd; 
X -> fwd = X; 

B. X -> bwd -> fwd = X -> bwd;  X -> fwd -> bwd = temp; 

X -> fwd -> bwd = X -> fwd; 
D. X -> bwd = temp;

 

X -> fwd = temp -> fwd; 
temp -> fwd = X; 

X -> fwd -> bwd = X; 
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Chapter 

5 

 
Introduction to Graphs: 

 

Graphs 

 

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. 

We will often denote n = |V|, e = |E|. 

 

A graph is generally displayed as figure 6.5.1, in which the vertices are represented by 

circles and the edges by lines. 

 

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no 

orientation is our undirected edge. 
 

If all the edges in a graph are undirected, then the graph is an undirected graph. The 

graph in figure 6.5.1(a) is an undirected graph. If all the edges are directed; then the 

graph is a directed graph. The graph of figure 6.5.1(b) is a directed graph. A directed 

graph is also called as digraph. A graph G is connected if and only if there is a simple 

path between any two nodes in G. 

 
A graph G is said to be complete if every node a in G is adjacent to every other node v 

in G. A complete graph with n nodes will have n(n-1)/2 edges. For example, Figure 
6.5.1.(a) and figure 6.5.1.(d) are complete graphs. 

 
A directed graph G is said to be connected, or strongly connected, if for each pair (u, v) 

for nodes in G there is a path from u to v and also a path from v to u. On the other hand, 
G is said to be unilaterally connected if for any pair (u, v) of nodes in G there is a path 
from u to v or a path from v to u. For example, the digraph shown in figure 6.5.1 

(e) is strongly connected. 

 

Figure 6.5.1 Various Graphs 

 
We can assign weight function to the edges: wG(e) is a weight of edge e ∈ E. The 

graph which has such function assigned is called weighted graph. 

B D 
A B 

v1 

A C E G 
E 

v4 v2 

C D 

(a) F (b) v3  

v1 v1 v1 v1 

v4 v2 v4 v2 v4 v2 
v2 v3 

(d)  (f) (g) 
v3 v3 v3 v4 v5 v6 v7 
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The number of incoming edges to a vertex v is called in–degree of the vertex (denote 

indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote 

outdeg(v)). For example, let us consider the digraph shown in figure 6.5.1(f), 

indegree(v1) = 2 outdegree(v1) = 1 

indegree(v2) = 2 outdegree(v2) = 0 

 
A path is a sequence of vertices (v1, v2, .......... , vk), where for all i, (vi, vi+1) ε E. A path is 

simple if all vertices in the path are distinct. If there is a path containing one or more 

edges which starts from a vertex Vi and terminates into the same vertex then the path is 
known as a cycle. For example, there is a cycle in figure 6.5.1(a), figure 6.5.1(c) and 
figure 6.5.1(d). 

 

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, 

the graphs of figure 6.5.1 (f) and figure 6.5.1 (g) are acyclic graphs. 

A graph G‘ = (V
‘
, E

‘
) is a sub-graph of graph G = (V, E) iff V‘ ⊆ V and E‘ ⊆ E. 

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it 
becomes forest. The following figure shows a forest F that consists of three trees T1, T2 
and T3. 

 
 

A Forest F 

 
A graph that has either self loop or parallel edges or both is called multi-graph. 

 

Tree is a connected acyclic graph (there aren‘t any sequences of edges that go around in 

a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and 

is a subgraph of G. A single graph can have multiple spanning trees. 

 

Let T be a spanning tree of a graph G. Then 

 

• Any two vertices in T are connected by a unique simple path. 

 

• If any edge is removed from T, then T becomes disconnected. 

 

• If we add any edge into T, then the new graph will contain a cycle. 

 

• Number of edges in T is n-1. 

A  X 

B D Y 
Q R 

Z 

T1 C E F T2  
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Representation of Graphs: 

 

There are two ways of representing digraphs. They are: 

 

• Adjacency matrix. 

• Adjacency List. 

• Incidence matrix. 

 

 
Adjacency matrix: 

 

In this representation, the adjacency matrix of a graph G is a two dimensional n x n 

matrix, say A = (ai,j), where 

a 
i, j = 

1 if there is an edge from vi to v j 

0 otherwise 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the 
graph is directed. This matrix is also called as Boolean matrix or bit matrix. 

 

 
 

 1 2 3 4 5 

1 0 1 1 0 1 

2 0 0 1 1 1 

3 0 0 0 1 0 

4 0 0 0 0 0 
5 0 0 1 1 0 

 

Figure 6.5.2. A graph and its Adjacency matrix 

 
Figure 6.5.2(b) shows the adjacency matrix representation of the graph G1 shown in 

figure 6.5.2(a). The adjacency matrix is also useful to store multigraph as well as 
weighted graph. In case of multigraph representation, instead of entry 0 or 1, the entry 
will be between number of edges between two vertices. 

 

In case of weighted graph, the entries are weights of the edges between the vertices. 

The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure 

6.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in figure 

6.5.3(a). 

 

 

 
 

A 0 3 6 ∝ ∝ ∝ ∝ 
B 3 0 2 4 ∝ ∝ ∝ 
C 6 2 0 1 4 2 ∝ 
D ∝ 4 1 0 2 ∝ 4 

E ∝ ∝ 4 2 0 2 1 

F ∝ ∝ 2 ∝ 2 0 1 

G ∝ ∝ ∝ 4 1 1 0 
 

Figure 6.5.3 Weighted graph and its Cost adjacency matrix 



 

(a) 
F 

1 2 3 

1 
1 

2 2 

3 3 

(a) Adjacency Matrix (b) Adjacency List 

Adjacency List: 

 

In this representation, the n rows of the adjacency matrix are represented as n linked 

lists. An array Adj[1, 2, . . . . . n] of pointers where for 1 < v < n, Adj[v] points to a 

linked list containing the vertices which are adjacent to v (i.e. the vertices that can be 

reached from v by a single edge). If the edges have weights then these weights may also 

be stored in the linked list elements. For the graph G in figure 6.5.4(a), the adjacency 

list in shown in figure 6.5.4 (b). 

 

 

 

 
 

Figure 6.5.4 Adjacency matrix and adjacency list 

 

 

 

Incidence Matrix: 
 

In this representation, if G is a graph with n vertices, e edges and no self loops, then 

incidence matrix A is defined as an n by e matrix, say A = (ai,j), where 

a 1 if there is an edge j incident to vi 

i, j = 
0 otherwise 

 

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a 

matrix is called as vertex-edge incidence matrix or simply incidence matrix. 

 

 
B c D 

a d f 
b e 

 
A 

B 

a b c d e f g h i j k l 

1 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 0 0 

A  C h E i G C 0 1 0 1 0 0 1 1 0 0 1 0 
 g  

k 
j 

 
l 

D 

E 

0 0 1 1 1 1 0 0 0 
0 0 0 0 1 0 0 1 1 1 0 0 

0 0 0 

 

 

 
Figure 6.5.4 Graph and its incidence matrix 

 

 
Figure 6.5.4(b) shows the incidence matrix representation of the graph G1 shown in 

figure 6.5.4(a). 

(b) F 0 0 0 0 0 0 0 0 0 1 1 1 
 G 0 0 0 0 0 1 0 0 1 0 0 1 

 

1 1 1 

0 0 1 

0 1 0 
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3 
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1 
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Minimum Spanning Tree (MST): 

 

A spanning tree for a connected graph is a tree whose vertex set is the same as the 

vertex set of the given graph, and whose edge set is a subset of the edge set of the given 

graph. i.e., any connected graph will have a spanning tree. 

 
Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning 
tree (MST) is a spanning tree with the smallest possible weight. 

 
Example: 

 

A w e ight e d gra ph G: T he mini ma l s pa nning tre e fro m w e ight e d gra ph G: 

 

Let's consider a couple of real-world examples on minimum spanning tree: 

 

1.10. One practical application of a MST would be in the design of a network. For 
instance, a group of individuals, who are separated by varying distances, wish 
to be connected together in a telephone network. Although MST cannot do 
anything about the distance from one connection to another, it can be used to 
determine the least cost paths with no cycles in this network, thereby 
connecting everyone at a minimum cost. 

 

1.11. Another useful application of MST would be finding airline routes. The vertices 

of the graph would represent cities, and the edges would represent routes 

between the cities. MST can be applied to optimize airline routes by finding 

the least costly paths with no cycles. 
 

Minimum spanning tree, can be constructed using any of the following two algorithms: 

 

\{ Kruskal‘s algorithm and 

\{ Prim‘s algorithm. 

 
Both algorithms differ in their methodology, but both eventually end up with the MST. 
Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in 
determining the MST. In Prim’s algorithm at any instance of output it represents tree 
whereas in Kruskal’s algorithm at any instance of output it may represent tree or not. 

G: 

A gra ph G: 
T hre e ( of ma ny po s s ible) s pa nning tre e s fro m gra ph G: 



 

Kruskal’s Algorithm 

 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking 

an edge with the least weight in a MST). 

 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have 

been added. Sometimes two or more edges may have the same cost. 

 

The order in which the edges are chosen, in this case, does not matter. Different MST‘s 

may result, but they will all have the same total cost, which will always be the minimum 

cost. 

 

Kruskal‘s Algorithm for minimal spanning tree is as follows: 

 

1.9. Make the tree T empty. 

1.10. Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges 

and E is not empty otherwise, proceed to step 6. 

1.11. Choose an edge (v, w) from E of lowest cost. 

1.12. Delete (v, w) from E. 

1.13. If (v, w) does not create a cycle in T 

then Add (v, w) to T 

else discard (v, w) 

6. If T contains fewer than n - 1 edges then print no spanning tree. 

 
 

Example 1: 

 

Construct the minimal spanning tree for the graph shown below: 

 

 

 

 
Arrange all the edges in the increasing order of their costs: 

 

Cost 10 15 20 25 30 35 40 45 50 55 

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6) 

 
10 

45 

 50 

40 
 35 

 

4 25 

20 

 

55 
 

15 



 

The stages in Kruskal‘s algorithm for minimal spanning tree is as follows: 

 

EDGE COST 
STAGES IN KRUSKAL’S 

ALGORITHM 
REMARKS 

 
(1, 2) 

 
10 

   
The edge between vertices 1 and 2 is 

1 2 

3 

the first edge selected. It is included in 

the spanning tree. 

  4  
5 

 

   6  

 

(3, 6) 
 

15 

   
Next, the edge between vertices 3 and 6 

1 2 
is selected and included in the tree. 

   3  

  4  
5 

 

   6  

(4, 6) 20 
 

1 

 
2 

3 

The edge between vertices 4 and 6 is 

next included in the tree. 

  4  
5 

 

   6  

(2, 6) 25 
 

1 

 
2 

3 

The edge between vertices 2 and 6 is 

considered next and included in the 

tree. 

  4 5 
 

   6  

 

(1, 4) 
 

30 Reject 
 

The edge between the vertices 1 and 4 
is discarded as its inclusion creates a 
cycle. 

(3, 5) 35 
 

1 

 
2 

3 

Finally, the edge between vertices 3 and 

5 is considered and included in the tree 

built. This completes the tree. 

  4 5 
 
The cost of the minimal spanning tree is 

   6   105. 



 

Example 2: 

 

Construct the minimal spanning tree for the graph shown below: 
 

 

Solution: 

 

Arrange all the edges in the increasing order of their costs: 
 

Cost 10 12 14 16 18 22 24 25 28 

Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2) 

 

The stages in Kruskal‘s algorithm for minimal spanning tree is as follows: 

 

EDGE COST 
STAGES IN KRUSKAL’S 

ALGORITHM 
REMARKS 

 
(1, 6) 

 
10 

 
1 

 
The edge between vertices 1 and 6 is 

  2 the first edge selected. It is included in 

  
6 

3
 

the spanning tree. 

  7  

  5  

  4  

 

(3, 4) 
 

12 

   
1 

    
Next, the edge between vertices 3 and 4 

    2  is selected and included in the tree. 

  6     
3 
  

     7    

   5      

      4   

 

(2, 7) 
 

14 

    
1 

   
The edge between vertices 2 and 7 is 

    2  next included in the tree. 

   6     
3 

 

      7   

    5     

      4   

1 28 

10 
 

 
14 

 

16 

25 
24  

5 18 
12 

22  



 

(2, 3) 16 1 

2 

The edge between vertices 2 and 3 is 
next included in the tree. 

6 
 

7 

5 

4 

The edge between the vertices 4 and 7 
(4, 7) 18 Reject is discarded as its inclusion creates a 

cycle. 

(4, 5) 22 1 

2 

6 

The edge between vertices 4 and 7 is 
considered next and included in the 
tree. 

7 
3 

5 

4 

6 
built. This completes the tree. 

3 

7 

5 

The cost of the minimal spanning tree is 
99. 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(5, 7) 
 

24 Reject 
 

The edge between the vertices 5 and 7 
is discarded as its inclusion creates a 
cycle. 

 

(5, 6) 
 

25 
 

1 

2 

 

Finally, the edge between vertices 5 and 
6 is considered and included in the tree 

 

 

 

 

 

 

 

 

MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM 

 

A given graph can have many spanning trees. From these many spanning trees, we have 

to select a cheapest one. This tree is called as minimal cost spanning tree. 

 
Minimal cost spanning tree is a connected undirected graph G in which each edge is 
labeled with a number (edge labels may signify lengths, weights other than costs). 
Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as 
small as possible 

 

The slight modification of the spanning tree algorithm yields a very simple algorithm for 

finding an MST. In the spanning tree algorithm, any vertex not in the tree but connected 

to it by an edge can be added. To find a Minimal cost spanning tree, we must be selective 

- we must always add a new vertex for which the cost of the new edge is as small as 

possible. 

 

This simple modified algorithm of spanning tree is called prim's algorithm for finding an 

Minimal cost spanning tree. Prim's algorithm is an example of a greedy algorithm. 



 

Prim’s Algorithm: 

 
E is the set of edges in G. cost [1:n, 1:n] is the cost adjacency matrix of an n vertex 
graph such that cost [i, j] is either a positive real number or ∝ if no edge (i, j) exists. A 

minimum spanning tree is computed and stored as a set of edges in the array t [1:n-1, 
1:2]. (t [i, 1], t [i, 2]) is an edge in the minimum-cost spanning tree. The final cost is 
returned. 

 

Algorithm Prim (E, cost, n, t) 

{ 
Let (k, l) be an edge of minimum cost in E; 
mincost := cost [k, l]; 
t [1, 1] := k; t [1, 2] := l; 

for  i :=1 to n do // Initialize near 

if (cost [i, l] < cost [i, k]) then near [i] := l; 

else near [i] := k; 

near [k] :=near [l] := 0; 
for  i:=2 to n - 1 do // Find n - 2 additional edges for t. 

{ 
Let j be an index such that near [j] ≠ 0 

and cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; 

mincost := mincost + cost [j, near 

[j]]; near [j] := 0 
for k:= 1 to n do // Update near[]. 

if ((near [k] ≠ 0) and (cost [k, near [k]] > cost [k, j])) 
then near [k] := j; 

} 
return mincost; 

} 

 

 

EXAMPLE: 

 

Use Prim‘s Algorithm to find a minimal spanning tree for the graph shown below 
starting with the vertex A. 

B 
4 

D 

3 2 1 2 
4
 

4 E 1 
 

A  C 2 G 
6 

2 F 1 

Solution: 
0 3 6  ∞ ∞   ∞ ∞ 

3 0 2  4 ∞ ∞ ∞ 
 6 2 0 1 4 2 ∞ 

The cost adjacency matrix is ∞ 4 1 0 2 ∞ 4 

 ∞ ∞ 4 2 0 2 1 
 ∞ ∞ 2 ∞ 2 0 1 

 
∞ ∞ ∞ 4 1 1 0 



 

The stepwise progress of the prim‘s algorithm is as follows: 

 

Step 1: 

 
 

 
 

A 

 

 

 

Step 2: 

 

 

 

 
A 

F 

 

 

 
Step 3: 

B 3 

  
∝ F 

 

B 3 

0 2 

C 
9. 

1 D 

B 3 

4 E 

A 0 2 

C 

∝ G 

  

Step 4: 

1 D 

A 0 2 2 E 4  

 
2 F 

Step 5: 

B 3 1 D 

A 0  

 

2 E 1 G 

2 F 

∝ D Vertex A B C D E F G 
  Status 0 1 1 1 1 1 1 

∝ E 

∝ G 

Dist. 

Next 

0 
* 

3 
A 

6 
A 

∝ 
A 

∝ 
A 

∝ 
A 

∝ 
A 

 

1.9.D Vertex A B C D E F G 
 Status 0 0 1 1 1 1 1 

E 
∝ G 

Dist. 

Next 

0 
* 

3 
A 

2 
B 

4 
B 

∝ 
A 

∝ 
A 

∝ 
A 

 

Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 

Dist. 0 3 2 1 4 2 ∝ 
Next * A B C C C A 

 

Vertex A B C D E F G 

Status 0 0 0 0 1 1 1 

Dist. 0 3 2 1 2 2 4 

Next * A B C D C D 

 

Vertex A B C D E F G 

Status 0 0 0 0 1 0 1 
Dist. 0 3 2 1 2 2 1 

Next * A B C D C E 

 



 

B 3 1 D 

  

 

  

 

1 F 

B 3  
 

 

0 2 1 

1 F 

Step 6: 

 

 

 

 

A G 

 

 

 

 

Step 7: 

 

 

 

 

A G 

 

 

 

 
 

Reachability Matrix (Warshall‘s Algorithm): 

 

Warshall‘s algorithm requires knowing which edges exist and which does not. It doesn‘t 

need to know the lengths of the edges in the given directed graph. This information is 

conveniently displayed by adjacency matrix for the graph, in which a ‗1‘ indicates the 

existence of an edge and ‗0‘ indicates non-existence. 

 
 

 

It begins with the adjacency matrix for the given graph, which is called A0, and 

then updates the matrix ‗n‘ times, producing matrices called A1, A2,  .......... , An and 
then stops. 

In warshall‘s algorithm the matrix Ai contains information about the existence of i– paths. 

A one entry in the matrix Ai will correspond to the existence of i–paths and zero entry 

will correspond to non-existence. Thus when the algorithm stops, the final matrix 

An, contains the desired connectivity information. 

A one entry indicates a pair of vertices, which are connected and zero entry indicates a 

pair, which are not. This matrix is called a reachability matrix or path matrix for the 

graph. It is also called the transitive closure of the original adjacency matrix. 

The update rule for computing Ai from Ai-1 in warshall‘s algorithm is: 

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1  [i, y]) ---- (1) 

A djac e nc y M atrix 

Vertex A B C D E F G 

Status 0 0 0 0 0 1 0 

Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

Vertex A B C D E F G 

Status 0 0 0 0 0 0 0 
Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

W a rs ha ll‘s A lgorit h m 
A ll P a irs Rec ha bility 

M atrix 



 

Example 1: 

 

Use warshall‘s algorithm to calculate the reachability matrix for the graph: 

4 

1 4 

5 6 

7 11 
 

1 

2 3 

7 

We begin with the adjacency matrix of the graph ‗A0‘ 

1 0 1 1 0 

A = 2 0 0 1 1 
0 3 0 0 0 0 

1 
4 1      1   0 

The first step is to compute ‗A1‘ matrix. To do so we will use the updating rule – (1). 

Before doing so, we notice that only one entry in A0 must remain one in A1, since in 

Boolean algebra 1 + (anything) = 1. Since these are only nine zero entries in A0, there 

are only nine entries in A0 that need to be updated. 

A1[1, 1] = A0[1, 1] ۷ (A0[1, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0 

A1[1, 4] = A0[1, 4] ۷ (A0[1, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0 

A1[2, 1] = A0[2, 1] ۷ (A0[2, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0 

A1[2, 2] = A0[2, 2] ۷ (A0[2, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0 

A1[3, 1] = A0[3, 1] ۷ (A0[3, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0 

A1[3, 2] = A0[3, 2] ۷ (A0[3, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0 

A1[3, 3] = A0[3, 3] ۷ (A0[3, 1] ٨ A0[1, 3]) = 0 ۷ (0 ٨ 1) = 0 

A1[3, 4] = A0[3, 4] ۷ (A0[3, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0 

A1[4, 4] = A0[4, 4] ۷ (A0[4, 1] ٨ A0[1, 4]) = 0 ۷ (1 ٨ 0) = 0 

 

1 0 1 1 0 
2 

A = 0 0 1 1 
1 3 0 0 0 0 

 

1 
4 1 1 0 

Next, A2 must be calculated from A1; but again we need to update the 0 entries, 

A2[1, 1] = A1[1, 1] ۷ (A1[1, 2] ٨ A1[2, 1]) = 0 ۷ (1 ٨ 0) = 0 

A2[1, 4] = A1[1, 4] ۷ (A1[1, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1 

A2[2, 1] = A1[2, 1] ۷ (A1[2, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0 

A2[2, 2] = A1[2, 2] ۷ (A1[2, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0 

A2[3, 1] = A1[3, 1] ۷ (A1[3, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0 

A2[3, 2] = A1[3, 2] ۷ (A1[3, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0 



 

A2[3, 3] = A1[3, 3] ۷ (A1[3, 2] ٨ A1[2, 3]) = 0 ۷ (0 ٨ 1) = 0 

A2[3, 4] = A1[3, 4] ۷ (A1[3, 2] ٨ A1[2, 4]) = 0 ۷ (0 ٨ 1) = 0 

A2[4, 4] = A1[4, 4] ۷ (A1[4, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1 

 
 

1 0 1 1 1 
2 

A = 0 0 1 1 
2 3 0 0 0 0 

1 
4 1 1 1 

This matrix has only seven 0 entries, and so to compute A3, we need to do only seven 
computations. 

A3[1, 1] = A2[1, 1] ۷ (A2[1, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0 

A3[2, 1] = A2[2, 1] ۷ (A2[2, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0 

A3[2, 2] = A2[2, 2] ۷ (A2[2, 3] ٨ A2[3, 2]) = 0 ۷ (1 ٨ 0) = 0 

A3[3, 1] = A2[3, 1] ۷ (A2[3, 3] ٨ A2[3, 1]) = 0 ۷ (0 ٨ 0) = 0 

A3[3, 2] = A2[3, 2] ۷ (A2[3, 3] ٨ A2[3, 2]) = 0 ۷ (0 ٨ 0) = 0 

A3[3, 3] = A2[3, 3] ۷ (A2[3, 3] ٨ A2[3, 3]) = 0 ۷ (0 ٨ 0) = 0 

A3[3, 4] = A2[3, 4] ۷ (A2[3, 3] ٨ A2[3, 4]) = 0 ۷ (0 ٨ 0) = 0 

 

1 0 1 1 1 
2 

A = 0 0 1 1 
3 3 0 0 0 0 

4 1 1 1 1 

Once A3 is calculated, we use the update rule to calculate A4 and stop. This matrix is 
the reachability matrix for the graph. 

A4[1, 1] = A3 [1, 1] ۷  (A3  [1, 4] ٨  A3  [4, 1]) = 0 ۷  (1 ٨  1) = 0 ۷ 1 = 1 

A4[2, 1] = A3 [2, 1] ۷  (A3  [2, 4] ٨  A3  [4, 1]) = 0 ۷  (1 ٨  1) = 0 ۷ 1 = 1 

A4[2, 2] = A3 [2, 2] ۷  (A3  [2, 4] ٨  A3  [4, 2]) = 0 ۷  (1 ٨  1) = 0 ۷ 1 = 1 

A4[3, 1] = A3 [3, 1] ۷  (A3 [3, 4] ٨  A3 [4, 1]) = 0 ۷  (0 ٨  1) = 0 ۷  0  = 0 

A4[3, 2] = A3 [3, 2] ۷  (A3  [3, 4] ٨  A3  [4, 2]) = 0 ۷  (0 ٨  1) = 0 ۷ 0 = 0 

A4[3, 3] = A3 [3, 3] ۷  (A3  [3, 4] ٨  A3  [4, 3]) = 0 ۷  (0 ٨  1) = 0 ۷ 0 = 0 

A4[3, 4] = A3 [3, 4] ۷ (A3 [3, 4] ٨ A3 [4, 4]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0 

 

1 1 1 1 1 

A  = 2 1 1 1 1 
4 3 0 0 0 0 

1 
4 1 1 1 

Note that according to the algorithm vertex 3 is not reachable from itself 1. This is 

because as can be seen in the graph, there is no path from vertex 3 back to itself. 



 

Traversing a Graph 

 

Many graph algorithms require one to systematically examine the nodes and edges of a 

graph G. There are two standard ways to do this. They are: 
 

• Breadth first traversal (BFT) 

• Depth first traversal (DFT) 

The BFT will use a queue as an auxiliary structure to hold nodes for future processing 

and the DFT will use a STACK. 

 

During the execution of these algorithms, each node N of G will be in one of three 

states, called the status of N, as follows: 
 

1. STATUS = 1 (Ready state): The initial state of the node N. 

 

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or STACK, waiting to 

be processed. 
 

3. STATUS = 3 (Processed state): The node N has been processed. 

 
Both BFS and DFS impose a tree (the BFS/DFS tree) on the structure of graph. So, we 
can compute a spanning tree in a graph. The computed spanning tree is not a minimum 
spanning tree. The spanning trees obtained using depth first search are called depth first 
spanning trees. The spanning trees obtained using breadth first search are called Breadth 
first spanning trees. 

 

Breadth first search and traversal: 

 

The general idea behind a breadth first traversal beginning at a starting node A is as 

follows. First we examine the starting node A. Then we examine all the neighbors of A. 

Then we examine all the neighbors of neighbors of A. And so on. We need to keep track 

of the neighbors of a node, and we need to guarantee that no node is processed more 

than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be 

processed, and by using a field STATUS that tells us the current status of any node. The 

spanning trees obtained using BFS are called Breadth first spanning trees. 

 

Breadth first traversal algorithm on graph G is as follows: 

 

This algorithm executes a BFT on graph G beginning at a starting node A. 

Initialize all nodes to the ready state (STATUS = 1). 

1. Put the starting node A in QUEUE and change its status to the waiting 

state (STATUS = 2). 
 

2. Repeat the following steps until QUEUE is empty: 

 

a. Remove the front node N of QUEUE. Process N and change the 

status of N to the processed state (STATUS = 3). 

 

b. Add to the rear of QUEUE all the neighbors of N that are in the 

ready state (STATUS = 1), and change their status to the waiting 

state (STATUS = 2). 

 

3. Exit. 



 

Depth first search and traversal: 

 

Depth first search of undirected graph proceeds as follows: First we examine the starting 

node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth first search 

from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent vertices have 

been visited, we back up to the last vertex visited, which has an unvisited vertex 'W' 

adjacent to it and initiate a depth first search from W. The search terminates when no 

unvisited vertex can be reached from any of the visited ones. 

 

This algorithm is similar to the inorder traversal of binary tree. DFT algorithm is similar 

to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to tell 

us the current status of a node. 

 

The algorithm for depth first traversal on a graph G is as follows. 

 

This algorithm executes a DFT on graph G beginning at a starting node A. 

 

5. Initialize all nodes to the ready state (STATUS = 1). 

 

6. Push the starting node A into STACK and change its status to the waiting state 
(STATUS = 2). 

 

7. Repeat the following steps until STACK is empty: 

 

Pop the top node N from STACK. Process N and change the status of N to 

the processed state (STATUS = 3). 
 

 
 

8. Exit. 

 

Example 1: 

Push all the neighbors of N that are in the ready state (STATUS = 1), and 

change their status to the waiting state (STATUS = 2). 

 

Consider the graph shown below. Traverse the graph shown below in breadth first 
order and depth first order. 

 

Adjacency list for graph G 

Node Adjacency List 

A F, C, B 

B A, C, G 

C A, B, D, E, F, G 

D C, F, E, J 

E C, D, G, J, K 

F A, C, D 

G B, C, E, K 

J D, E, K 

K E, G, J 

 

A 

F C  

D E G 

J K A Gra ph G 



 

Breadth-first search and traversal: 

 

The steps involved in breadth first traversal are as follows: 

 

Current 

Node 

 

QUEUE 
 

Processed Nodes 
Status 

A B C D E F G J K 

   1 1 1 1 1 1 1 1 1 

 A  2 1 1 1 1 1 1 1 1 

A F C B A 3 2 2 1 1 2 1 1 1 

F C B D A F 3 2 2 2 1 3 1 1 1 

C B D E G A F C 3 2 3 2 2 3 2 1 1 

B D E G A F C B 3 3 3 2 2 3 2 1 1 

D E G J A F C B D 3 3 3 3 2 3 2 2 1 

E G J K A F C B D E 3 3 3 3 3 3 2 2 2 

G J K A F C B D E G 3 3 3 3 3 3 3 2 2 

J K A F C B D E G J 3 3 3 3 3 3 3 3 2 

K EMPTY A F C B D E G J K 3 3 3 3 3 3 3 3 3 

 

For the above graph the breadth first traversal sequence is: A F C B D E G J K. 

 

Depth-first search and traversal: 

 

The steps involved in depth first traversal are as follows: 

 

Current 

Node 

 

Stack 
 

Processed Nodes 
Status 

A B C D E F G J K 

   1 1 1 1 1 1 1 1 1 

 A  2 1 1 1 1 1 1 1 1 

A B C F A 3 2 2 1 1 2 1 1 1 

F B C D A F 3 2 2 2 1 3 1 1 1 

D B C E J A F D 3 2 2 3 2 3 1 2 1 

J B C E K A F D J 3 2 2 3 2 3 1 3 2 

K B C E G A F D J K 3 2 2 3 2 3 2 3 3 

G B C E A F D J K G 3 2 2 3 2 3 3 3 3 

E B C A F D J K G E 3 2 2 3 3 3 3 3 3 

C B A F D J K G E C 3 2 3 3 3 3 3 3 3 

B EMPTY A F D J K G E C B 3 3 3 3 3 3 3 3 3 

 

For the above graph the depth first traversal sequence is: A F D J K G E C B. 



 

   

   

  
 

 

   
T h e G r a p h G 

Example 2: 

 

Traverse the graph shown below in breadth first order, depth first order and construct 

the breadth first and depth first spanning trees. 
 

Node Adjacency List 

A F, B, C, G 
B A 

C A, G 

D E, F 

E G, D, F 

F A, E, D 

G A, L, E, H, J, C 

H G, I 

I H 
J G, L, K, M 
K J 

L G, J, M 

The Madjacency L, listJ for the graph G 

If the depth first traversal is initiated from vertex A, then the vertices of graph G are 

visited in the order: A F E G L J K M H I C D B. The depth first spanning tree is shown 

in the figure given below: 
 

Depth first Traversal 

 

If the breadth first traversal is initiated from vertex A, then the vertices of graph G are 

visited in the order: A F B C G E D L H J M I K. The breadth first spanning tree is shown 

in the figure given below: 

 

 

 

 

 

 

 

 

 

 

 
 

Breadth first traversal 

A 

F B C G 

E D L H J 

M I  

A 

F B 

E 

G D 

L H C 

J I 

K M 



 

1   

7.4.4. 

7.4.5. 

 

   

   

 

 
 

 
 

 
     

  

  

Example 3: 

 

Traverse the graph shown below in breadth first order, depth first order and construct 

the breadth first and depth first spanning trees. 

 
 

Graph G 

 

 
 

H e a d N o d e s 

 

 

 

 

 

 

 

 
 

3  
  

8  
  

 

3  
  

8  
  

 

 

A dj a c e nc y lis t fo r  g r a p h G 

 

 

Depth first search and traversal: 

 

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in 
the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows: 

 
 

Depth First Spanning Tree 

1 

2 3 

4 5 6 7 

8 

1 

2 3 

 5 6 7 

8 



 

Breadth first search and traversal: 

 

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in 

the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows: 
 

Breadth First Spanning Tree 

 

 
 

EXCERCISES 

 

7.6. Show that the sum of degrees of all vertices in an undirected graph is twice the 

number of edges. 

 

7.7. Show that the number of vertices of odd degree in a finite graph is even. 

 

7.8. How many edges are contained in a complete graph of ―n‖ vertices. 

7.9. Show that the number of spanning trees in a complete graph of ―n‖ vertices is 2
n-1

 

– 1. 

 
7.10. Prove that the edges explored by a breadth first or depth first traversal of a 

connected graph from a tree. 

 

7.11. Explain how existence of a cycle in an undirected graph may be detected by 

traversing the graph in a depth first manner. 

 

7.12. Write a ―C‖ function to generate the incidence matrix of a graph from its 

adjacency matrix. 

 
7.13. Give an example of a connected directed graph so that a depth first traversal of 

that graph yields a forest and not a spanning tree of the graph. 

 

7.14. Rewrite the algorithms ―BFSearch‖ and ―DFSearch‖ so that it works on adjacency 

matrix representation of graphs. 

 

7.15. Write a ―C‖ function to find out whether there is a path between any two vertices 

in a graph (i.e. to compute the transitive closure matrix of a graph) 

 
7.16. Write a ―C‖ function to delete an existing edge from a graph represented by an 

adjacency list. 

 

7.17. Construct a weighted graph for which the minimal spanning trees produced by 

Kruskal‘s algorithm and Prim‘s algorithm are different. 

1 

2 3 

 5 6 7 

8 



 

5. Describe the algorithm to find a minimum spanning tree T of a weighted graph G. 

Find the minimum spanning tree T of the graph shown below. 

 

 

5. For the graph given below find the following: 

Linked representation of the graph. 

Adjacency list. 

Depth first spanning tree. 

Breadth first spanning tree. 
Minimal spanning tree using Kruskal‘s and Prim‘s algorithms. 

 

3.6. For the graph given below find the following: 

Linked representation of the graph. 

Adjacency list. 

Depth first spanning tree. 

Breadth first spanning tree. 
Minimal spanning tree using Kruskal‘s and Prim‘s algorithms. 

 

• For the graph given below find the following: 

Linked representation of the graph. 

Adjacency list. 

Depth first spanning tree. 

Breadth first spanning tree. 
Minimal spanning tree using Kruskal‘s and Prim‘s algorithms. 

 

6 5 

A B  

1 8 

4  

D E 

3 

8 6 

1 1 5 7 

2 4 6 2 7 9 

3 3 8 10 

4 10 9 5 

1 
4 

 3 7 8 

6 
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Multiple Choice Questions 

 
1. How can the graphs be represented? [ D ] 

A. Adjacency matrix C. Incidence matrix 

B. Adjacency list D. All of the above 

2. The depth-first traversal in graph is analogous to tree traversal: [ C ] 

A. In-order C. Pre-order 

B. Post-order D. Level order 

3. The children of a same parent node are called as: [ C ] 

A. adjacent node C. Sibblings 

B. non-leaf node D. leaf node 

4. Complete graphs with n nodes will have  edges. [ C ] 

A. n - 1 C. n(n-1)/2 

B. n/2 D. (n – 1)/2 

5. A graph with no cycle is called as: [ C ] 
A. Sub-graph C. Acyclic graph 

B. Directed graph D. none of the above 

6. The maximum number of nodes at any level is: [ B ] 
A. n C. n + 1 

B. 2
n 

D. 2n 

FIGURE 1 and its adjacency list 

7. For the figure 1 shown above, the depth first spanning tree visiting [ B ] 

sequence is: 
A. A B C D E F G C. A B C D E F G 

B. A B D C F G E D. none of the above 

8. For the figure 1 shown above, the breadth first spanning tree visiting [ B ] 
sequence is: 
A. A B D C F G E C. A B C D E F G 

B. A B C D E F G D. none of the above 

9. Which is the correct order for Kruskal‘s minimum spanning tree algorithm [ B ] 

to add edges to the minimum spanning tree for the figure 1 shown 

above: 

• (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G) 

• (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C) 

• both A and B 

• none of the above 

 

10. For the figure 1 shown above, the cost of the minimal spanning tree is: [ A ] 

A. 57 C. 48 
B. 68 D. 32 

Node Adjacency List 

A B C D 

B A D E 

C A D F 

D A B C E F G 

E B D G 

F C D G 

G F D E 

 

A 
20 

B 

23   15 

C 
36 

D 
9 

E 

28 
25 16 

3 

F 
17 

G 



 

A 
3 

D 

2 1 5 5 

B 3 G 4 E 

1 4 6  

C 
3 

F 

11. A simple graph has no loops. What other property must a simple graph [ D ] 

have? 
A. It must be directed. C. It must have at least one vertex. 

B. It must be undirected. D. It must have no multiple edges. 

12. Suppose you have a directed graph representing all the flights that an [ D ] 

airline flies. What algorithm might be used to find the best sequence of 

connections from one city to another? 
A. Breadth first search. C. A cycle-finding algorithm. 

B. Depth first search. D. A shortest-path algorithm. 

13. If G is an directed graph with 20 vertices, how many boolean values will [ D ] 

be needed to represent G using an adjacency matrix? 
A. 20 C. 200 

B. 40 D. 400 

14. Which graph representation  allows the most efficient determination of [ B ] 

the existence of a particular edge in a graph? 
A. An adjacency matrix. C. Incidence matrix 

B. Edge lists. D. none of the above 

15. What graph traversal algorithm uses a queue to keep track of vertices [ A ] 

which need to be processed? 
A. Breadth-first search. C Level order search 

B. Depth-first search. D. none of the above 

16. What graph traversal algorithm uses a stack to keep track of vertices [ B ] 

which need to be processed? 
A. Breadth-first search. C Level order search 

B. Depth-first search. D. none of the above 

17. What is the expected number of operations needed to loop through all [ D ] 

the edges terminating at a particular vertex given an adjacency matrix 

representation of the graph? (Assume n vertices are in the graph and m 
edges terminate at the desired node.) 

A. O(m) C. O(m²) 

B. O(n) D. O(n²) 

18. What is the expected number of operations needed to loop through all [ A ] 

the edges terminating at a particular vertex given an adjacency list 

representation of the graph? (Assume n vertices are in the graph and m 

edges terminate at the desired node.) 
A. O(m) C. O(m²) 

B. O(n) D. O(n²) 

19. [ B ] 

 

 

 

FIGURE 3 

 

 

 

 

For the figure 3, starting at vertex A, which is a correct order for Prim‘s 

minimum spanning tree algorithm to add edges to the minimum 

spanning tree? 



 

7.6.3. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D) 

7.6.4. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E) 
7.6.5. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E) 
7.6.6. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F) 

20. For the figure 3, which is a correct order for Kruskal‘s minimum spanning [ C ] tree 

algorithm to add edges to the minimum spanning tree? 
4. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D) 

5. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E) 

6. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E) 

7. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F) 

21. Which algorithm does not construct an in-tree as part of its processing? [ ] 

A. Dijkstra‘s Shortest Path Algorithm 

B. Prim‘s Minimum Spanning Tree Algorithm 

C. Kruskal‘s Minimum Spanning Tree Algorithm 

D. The Depth-First Search Trace Algorithm 

22. The worst-case running time of Kruskal‘s minimum-cost spanning tree [ ] 

algorithm on a graph with n vertices and m edges is: 
A. C. 

B. D. 

23. An adjacency matrix representation of a graph cannot contain [ D ] 

information of: 
A. Nodes C. Direction of edges 

B. Edges D. Parallel edges 

FIGURE 4 and its adjacency list 
 

24. For the figure 4, which edge does not occur in the depth first spanning [ B ] 

tree resulting from depth first search starting at node B: 

A. F → E C. C → G 

B. E → C D. C → F 

25. The set of all edges generated by DFS tree starting at node B is: [ A ] 

A. B A D C G F E C. B A C D G F E 

B. A D D. Cannot be generated 

 

26. The set of all edges generated by BFS tree starting at node B is: [ C ] 

A. B A D C G F E C. B A C D G F E 

B. A D D. Cannot be generated 

Node Adjacency List 

A D 

B A C 

C G D F 

D ---- 

E C D 

F E A 

G B 

 

A 

B D 

G F 

C E 



 

 


